Skip to main content

Advertisement

Log in

Effects of Interactions Between Cadmium and Lead on Growth, Nitrogen Fixation, Phytochelatin, and Glutathione Production in Mycorrhizal Cajanus cajan (L.) Millsp.

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Heavy metals (HM) are a unique class of toxicants because they cannot be broken up into nontoxic forms. Excess HM causes stunted growth, upsets mineral nutrition, and affects membrane structure and permeability. High tolerance to HM toxicity is based on reduced metal uptake or increased internal sequestration in a genotype. Arbuscular mycorrhizal (AM) fungi are important rhizospheric microorganisms that occur in metal-contaminated soils and perhaps detoxify the potential effects of metals. The aim of this work was to study the role of the AM fungus Glomus mosseae in the alleviation of cadmium (Cd) and lead (Pb) toxicities in Cajanus cajan (L.) Millsp. (pigeonpea) genotypes. The effects of interactions between Cd (25 and 50 mg/kg) and Pb (500 and 800 mg/kg) on plant dry mass, nitrogen metabolism, and production of phytochelatins (PCs) and glutathione (GSH) were monitored with and without AM fungus in genotypes Sel-85N (relatively tolerant) and Sel-141-97 (sensitive). Cd treatments were more toxic than Pb, and their combinations led to synergistic inhibitions to growth and nitrogen-fixing potential (acetylene reduction activity [ARA]) in both genotypes. However, the effects were less deleterious in Sel-85N than in Sel-141-97. Exposure to Cd and Pb significantly increased the levels of PCs in a concentration- and genotype-dependent manner, which could be directly correlated with the intensity of mycorrhizal infection (MI). Stimulation of GSH production was observed under Cd treatments, although no obvious effects on GSH levels were observed under Pb treatments. The metal contents (Cd, Pb) were higher in roots and nodules when compared with that in shoots, which was significantly reduced in the presence of AM fungi. The results indicated that PCs and GSH might function as potential biomarkers for metal toxicity, and microbial inoculations showed bioremediation potential by helping pigeonpea plants to grow in multimetal contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abou-Shanab RA, Ghanem K, Ghanem N, Al-Kolaibe A (2008) The role of bacteria on heavy metal extraction and uptake by plants growing on multi-metal-contaminated soils. World J Microbiol Biotechnol 24:253–262

    Article  CAS  Google Scholar 

  • Ahmed A, Tajmir-Riahi HA (1993) Interaction of toxic metals ions Cd2+, Hg2+ and Pb2+ with light-harvesting proteins of chloroplast thylakoid membranes: an FTIR spectroscopic study. J Inorg Biochem 40:235–243

    Article  Google Scholar 

  • Alcantara E, Romera FJ, Canete M, De La Guardia MD (1994) Effects of heavy metals on both induction and function of root Fe (III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. J Exp Bot 45:1893–1898

    Article  CAS  Google Scholar 

  • Al-Raddad A (1991) Response of bean, broad bean and chickpea plants to inoculation with Glomus species. Sci Hortic 146:195–200

    Google Scholar 

  • An YJ (2004) Soil ecotoxicity assessment using cadmium sensitive plants. Environ Sci Technol 127:21–26

    CAS  Google Scholar 

  • Anderson ME (1985) Determination of glutathione and glutathione disulfides in biological samples. Meth Enzymol 113:548–570

    Article  PubMed  CAS  Google Scholar 

  • Andrade SAL, Abreu CA, Abreu MF, Silveira APD (2004) Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbiosis under soybean plants. Appl Soil Ecol 26:123–131

    Article  Google Scholar 

  • Andrade SAL, Jorge RA, da Silveira APD (2005) Cadmium effect on the association of jackbean (Canavalia ensiformis) and arbuscular mycorrhizal fungi. Sci Agric 62(4):389–394

    Article  Google Scholar 

  • Anjum NA, Umar S, Ahmad A, Iqbal M (2008) Responses of components of antioxidant system in moongbean (Vigna radiata L. Wilezek) genotypes to cadmium. Common Soil Sci Plant Anal 39:2469–2483

    Article  CAS  Google Scholar 

  • Azcón R, Perálvarez Mdel C, Roldán A, Barea JM (2009) Arbuscular mycorrhizal fungi, Bacillus cereus and Candida parapsilosis, from a multicontaminated soil alleviate metal toxicity in plants. Microb Ecol 59(4):668–677

    Article  PubMed  Google Scholar 

  • Baker AJM, Ewart K, Hendry GAF, Thorpe PC, Walker PL (1990) The evolutionary basis of cadmium tolerance in higher plants. In: 4th international conference on environmental contamination, Barcelona, pp 23–29

  • Balestrasse KB, Gallego SM, Tomaro ML (2004) Cadmium induced senescence in nodules of soybean (Glycine max. L.) plants. Plant Soil 262:373–381

    Article  CAS  Google Scholar 

  • Balestrasse KB, Gallego SM, Tomaro ML (2006) Oxidation of the enzymes involved in nitrogen assimilation plays an important role in the cadmium-induced toxicity in soybean plants. Plant Soil 284:187–194

    Article  CAS  Google Scholar 

  • Banaszak A, Napieralska A, Wozny A (2001) Inhibition of greening of Lemna minor by Pb2+. Biology 56:111–116

    CAS  Google Scholar 

  • Belimov AA, Safronova VI, Tsyganov VE, Borisov AY, Kozhemyakov AP, Tikhonovich IA, Stepanok VV, Martenson AM, Gianinazzi–Pearson V (2003) Genetic variability in tolerance to cadmium and accumulation of heavy metals in pea (Pisum sativum L.). Euphytica 131:25–35

    Article  CAS  Google Scholar 

  • Bell MJ, Mclaughlin MJ, Wright GC, Cruickshank J (1997) Inter and intra-specific variation in accumulation of cadmium by peanut, soybean, and navybean. Aus J Agr Res 48:1151–1160

    Article  CAS  Google Scholar 

  • Bhargava P, Srivastava AK, Urmil S, Rai LC (2005) Phytochelatin plays a role in UV-B tolerance in N2-fixing cyanobacterium Anabaena doliolum. J Plant Physiol 162:1220–1225

    Article  PubMed  CAS  Google Scholar 

  • Bidar G, Garcon G, Pruvot C, Dewaele D, Cazier F, Douay F, Shirali P (2007) Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: Plant metal concentration and phytotoxicity. Environ Pollut 147:546–553

    Article  PubMed  CAS  Google Scholar 

  • Bidar G, Pruvot C, Garcon G, Verdin A, Shirali P, Douay F (2009) Seasonal and annual variations of metal uptake, bioaccumulation, and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal-contaminated field. Environ Sci Pollut Res 16:42–53

    Article  CAS  Google Scholar 

  • Blum R, Beck A, Korte A, Stengel A, Letzel T, Lendzian K, Grill E (2007) Function of phytochelatin synthase in catabolism of glutathione-conjugates. Plant J 49:740–749

    Article  PubMed  CAS  Google Scholar 

  • Boucher N, Carpentier R (1999) Hg2+, Cu2+, and Pb2+ induced changes in photosystem-II photochemical yield and energy storage in isolated thylakoid membranes: a study using simultaneous and photoacoustic measurements. Photosynth Res 59:167–174

    Article  CAS  Google Scholar 

  • Brekken A, Stennes E (2004) Seasonal concentrations of cadmium and zinc in native pasture plants: consequences for grazing animals. Sci Total Environ 326:181–195

    Article  PubMed  CAS  Google Scholar 

  • Brennan MA, Shelley ML (1999) A model of the uptake, translocation and accumulation of lead (Pb) by maize for the purpose of phytoextraction. Ecol Eng 12:271–297

    Article  Google Scholar 

  • Burzynski M (1987) The influence of lead and cadmium on the absorption and distribution of potassium, calcium, magnesium and iron in cucumber seedlings. Acta Physiol Plant 9:229–238

    CAS  Google Scholar 

  • Burzynski M, Buczek J (1998) Uptake and assimilation of ammonium ions by cucumber seedlings from solutions with different pH and addition of heavy metals. Acta Soc Bot Pol 67(2):197–200

    CAS  Google Scholar 

  • Carpena RO, Vazquez S, Esteban E, Fernandez-Pascual M, de Felipe MR, Zornoza P (2003) Cadmium-stress in white lupin: effects on nodule structure and functioning. Plant Physiol Biochem 41:911–919

    Article  CAS  Google Scholar 

  • Chen J, Zhou J, Goldsbrough PB (1997) Characterization of phytochelatin synthase from tomato. Physiol Plant 101:165–172

    Article  CAS  Google Scholar 

  • Chen YX, He YF, Yang Y, Yu YL, Zhen SJ, Tian GM, Luo YM, Wong MH (2003) Effect of cadmium on nodulation and N2 fixation of soybean in contaminated soils. Chemosphere 50:781–787

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Sun T, Chao L, Guo G (2007) Interaction between cadmium, lead and potassium fertilizer (K2SO4) in a soil-plant system. Environ Geochem Health 29:435–446

    Article  PubMed  CAS  Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    Article  CAS  Google Scholar 

  • Comba ME, Benavides MP, Tomaro ML (1998) Effect of salt stress on antioxidant defence system in soybean root nodules. Aust J Plant Physiol 25:665–671

    Article  CAS  Google Scholar 

  • Czuba M, Kraszewski A (1994) Long term cadmium exposure accelerates oxidant injury: significance of bound/free water states during long-term metal stress. Ecotoxicol Environ Saf 29(3):330–348

    Article  PubMed  CAS  Google Scholar 

  • Dakora FD (1995) A functional relationship between leghemoglobin and nitrogenase based on novel measurements of the two proteins in legume root nodules. Ann Bot 75:49–54

    Article  PubMed  CAS  Google Scholar 

  • de Andrade SAL, da Silveira APD, Jorge RA, de Abreu MF (2008) Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza. Int J Phytoremed 10(1):1–13

    Article  CAS  Google Scholar 

  • Del Longo OT, Gonzalez CA, Pastori GM, Tripps VS (1993) Antioxidant defences under hyperoxygenic and hyperosmotic conditions in leaves of two lines of maize with differential sensitivity to drought. Plant Cell Physiol 34:1023–1028

    CAS  Google Scholar 

  • Del Val C, Barea JM, Azcon-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy metal contaminated soils. Appl Environ Microbiol 65:718–723

    PubMed  CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential oxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Wu FB, Zhang GP (2006) Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere 64:1659–1666

    Article  PubMed  CAS  Google Scholar 

  • Duman F, Cicek M, Sezen G (2007) Seasonal changes of metal accumulation and distribution in common club rush (Schoenoplectus lacustris) and common reed (Phragmites australis). Ecotoxicology 16:457–463

    Article  PubMed  CAS  Google Scholar 

  • Eun SO, Youn HS, Lee Y (2000) Lead disturbs microtubule organization in the root meristem of Zea mays. Physiol Plant 110:357–365

    Article  CAS  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione-associated mechanisms of acclamatory stress tolerance and signaling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Freedman JH, Ciriolo MR, Peisach J (1989) The role of glutathione in copper metabolism and toxicity. J Biol Chem 264:5598–5605

    PubMed  CAS  Google Scholar 

  • Galli U, Schuepp H, Brunold C (1994) Heavy metal binding by mycorrhizal fungi. Physiol Plant 92:364–368

    Article  CAS  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  • Gisbert C, Ros R, de Haro A, Walker DJ, Bernal MP, Serrano R, Navarro-Avino J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445

    Article  PubMed  CAS  Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1987) Phytochelatins, a class of heavy metal binding peptides from plants are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84:439–443

    Article  PubMed  CAS  Google Scholar 

  • Hagemeyer J, Kahle H, Breckle SW, Waisel Y (1986) Cadmium in Fagus sylvatica L. trees and seedlings: leaching, uptake and interconnection with transpiration. Water Air Soil Pollut 29:347–359

    Article  CAS  Google Scholar 

  • Hajduch M, Rakwal R, Agrawal GK, Yonekura M, Petrova A (2001) High-resolution two-dimensional electrophoresis separation of proteins from metal-stressed rice (Oryza sativa L.) leaves: drastic reduction/fragmentation of ribulose-1,5-biphosphate carboxylase/oxygenase and induction of stress-related proteins. Electrophoresis 22:2824–2831

    Article  PubMed  CAS  Google Scholar 

  • Hassan JM, Wang Z, Zhang G (2005) Sulphur alleviates growth inhibition and oxidative stress caused by cadmium toxicity in rice. J Plant Nutr 28:1785–1800

    Article  CAS  Google Scholar 

  • Hildebrandt U, Kaldorf M, Bothe H (1999) The zinc violet and its colonization by arbuscular mycorrhizal fungi. J Plant Physiol 154:709–717

    CAS  Google Scholar 

  • Inouhe M, Ninomiya S, Tohoyama H, Joho M, Murayama T (1994) Differential characteristics of root in the cadmium-tolerance and Cd-binding complex formation between mono- and dicotyledonous plants. J Plant Res 107:201–207

    Article  CAS  Google Scholar 

  • Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:339–364

    Article  Google Scholar 

  • Jamal A, Ayub N, Usman M, Khan AG (2002) Arbuscular mycorrhizal fungi enhance zinc and nickel uptake from contaminated soil by soybean and lentil. Int J Phytorem 4:205–221

    Article  CAS  Google Scholar 

  • John R, Gadgil K, Ahmad P, Sharma S (2008) Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil Environ 54(6):262–270

    CAS  Google Scholar 

  • Joner EJ, Leyval C (1997) Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol 135:352–360

    Article  Google Scholar 

  • Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234

    Article  CAS  Google Scholar 

  • Kahle H (1993) Response of roots of trees to heavy metals. Environ Exp Bot 33:99–119

    Article  Google Scholar 

  • Kang SH, Singh S, Kim JY, Lee W, Mulchandani A, Chen W (2007) Bacteria metabolically engineered for enhanced phytochelatin production and cadmium accumulation. Appl Environ Microbiol 73:6317–6320

    Article  PubMed  CAS  Google Scholar 

  • Khade SW, Adholeya A (2007) Feasible bioremediation through arbuscular mycorrhizal fungi imparting heavy metal tolerance: a retrospective. Bioremed J 11:1–33

    Article  CAS  Google Scholar 

  • Kim YY, Yang YY, Lee Y (2002) Pb and Cd uptake in rice roots. Physiol Plant 116:368–372

    Article  CAS  Google Scholar 

  • Kunert KJ, Foyer CH (1993) Thiol/disulfide exchange in plants. In: De Kok LJ (ed) Sulphur nutrition and assimilation in higher plants. SPB Academic Publishing, The Hague, pp 139–151

    Google Scholar 

  • Labri A, Morales F, Abadia A, Gogorcena Y, Lucena JJ, Abadia J (2002) Effects of Cd and Pb in sugarbeet plants grown in nutrient solution: induced Fe deficiency and growth inhibition. Funct Plant Biol 29:1453–1464

    Article  Google Scholar 

  • Li J, Guo J, Xu W, Ma M (2006) Enhanced cadmium accumulation in transgenic tobacco expressing the phytochelatin synthase gene of Cynodon dactylon L. J Integr Plant Biol 48:928–937

    Article  CAS  Google Scholar 

  • Lima AI, Pereria SI, Figueira EM, Caldeira GC, Caldiera HD (2006) Cadmium detoxification in roots of Pisum sativum seedlings: relationship between toxicity levels, thiol pool alterations and growth. Environ Exp Bot 55:149–162

    Article  CAS  Google Scholar 

  • Lin RZ, Wang XR, Luo Y, Du WC, Guo HY, Yin DQ (2007) Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Chemosphere 69:89–98

    Article  PubMed  CAS  Google Scholar 

  • LiQin C, YiFei G, LiMin Y, QinQuan W (2008) Synergistic defensive mechanism of phytochelatins and antioxidative enzymes in Brassica chinensis L. against Cd stress. Chin Sci Bull 53(10):1503–1511

    Article  CAS  Google Scholar 

  • Lopez-Millan A, Sagardoy R, Solonas M, Abadia A, Abadia J (2009) Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Bot 65:376–385

    Article  CAS  Google Scholar 

  • Lozano-Rodriguez E, Hernandez LE, Bonay P, Carpena-Ruiz RO (1997) Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. J Exp Bot 306:123–128

    Article  Google Scholar 

  • Maitani T, Kubota H, Sato K, Yamada T (1996) The composition of metals bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum. Plant Physiol 110:1145–1150

    PubMed  CAS  Google Scholar 

  • May MJ, Vernoux T, Leaver C, Van-Montagu M, Inze D (1998a) Glutathione homeostatis in plants: implications for environmental sensing and plant development. J Exp Bot 49:649–667

    Article  CAS  Google Scholar 

  • May MJ, Vernoux T, Sanchez-Fernandez R, Van Montagu M, Inze D (1998b) Evidence for posttranscriptional activation of γ-glutamylcysteine synthetase during plant stress responses. Proc Natl Acad Sci USA 95:12049–12054

    Article  PubMed  CAS  Google Scholar 

  • Mazen AMA (1995) Assessment of heavy metal accumulation and performance of some physiological parameters in Zea mays L. and Vicia faba L. grown on soil amended by sewage sludge resulting from sewage water treatment in the state of Qatar. Qatar Univ Sci J 15:353–359

    CAS  Google Scholar 

  • Meharg AA, Cairney JWG (2000) Co-evolution of mycorrhiza symbionts and their host to metal contaminated environments. Adv Ecol Res 30:69–112

    Article  CAS  Google Scholar 

  • Miranda MG, Ilangiovan K (1996) Uptake of lead by Lemna gibba L. influence on specific growth rate and basic biochemical changes. Bull Environ Contam Toxicol 56:1000–1007

    Article  PubMed  CAS  Google Scholar 

  • Mishra A, Choudhari MA (1998) Amelioration of lead and mercury effects on germination and rice seedling growth by antioxidants. Biol Plant 41:469–473

    Article  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MN (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44(1):25–37

    Article  PubMed  CAS  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    Article  PubMed  CAS  Google Scholar 

  • Munzuroglu O, Geckil H (2002) Effects of metals on seed germination, root elongation, and coleoptiles and hypocotyls growth in Triticum aestivum and Cucumis sativus. Arch Environ Contam Toxicol 43:203–213

    Article  PubMed  CAS  Google Scholar 

  • Nikiforova V, Freitag J, Kempa S, Adamik M, Hesse H, Hoefgen R (2003) Transcriptome analysis of sulphur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J 33:633–650

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Gomez LA, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling. J Exp Bot 53:1283–1304

    Article  PubMed  CAS  Google Scholar 

  • Obroucheva NV, Bystrova EI, Ivanov VB, Anupova OV, Seregin IV (1998) Root growth responses to lead in young maize seedlings. Plant Soil 200:55–61

    Article  CAS  Google Scholar 

  • Ouariti O, Boussama N, Zarrouk M, Cherif A, Ghorbal MH (1997) Cadmium and copper induced changes in tomato membrane lipids. Phytochemistry 45:1343–1350

    Article  PubMed  CAS  Google Scholar 

  • Paivoke AEA (2002) Soil lead alters phytase activity and mineral nutrient balance of Pisum sativum. Environ Exp Bot 48:61–73

    Article  CAS  Google Scholar 

  • Pal R, Rai JPN (2010) Phytochelatins: peptides involved in heavy metal detoxification. Appl Biochem Biotechnol 160:945–963

    Article  PubMed  CAS  Google Scholar 

  • Paradiso A, Berardino R, de Pinto MC, Sanita di Toppi L, Storelli MM, Tommasi F, Gara LG (2008) Increase in ascorbate- glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol 49(3):362–374

    Article  PubMed  CAS  Google Scholar 

  • Pawlowska TE, Blaszkowski J, Ruhling A (1996) The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza 6:499–505

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Pitschke A, Forzani C, Hirt H (2006) Reactive oxygen species signaling in plants. Antioxid Redox Signal 8:1757–1764

    Article  Google Scholar 

  • Plenchette C, Furlan V, Fortin JA (1983) Responses of endomycorrhizal plants grown in a calcined montmollironite clay to different levels of soluble phosphorus. II. Effect on nutrient uptake. Can J Bot 61:1384–1391

    Article  CAS  Google Scholar 

  • Poskuta JW, Parys E, Romanowaska E (1996) Toxicity of lead to photosynthesis, accumulation of chlorophyll, respiration and growth of Chlorella pyrenoidosa. Protective role of dark respiration. Acta Physiol Plant 18:165–171

    CAS  Google Scholar 

  • Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35:525–545

    Article  CAS  Google Scholar 

  • Rabie GH (2005) Contribution of arbuscular mycorrhizal fungus to red kidney and wheat plants tolerance grown in heavy metal-polluted soil. Afr J Biotechnol 4(4):332–345

    CAS  Google Scholar 

  • Rashid A, Camm EL, Ekramoddoullah KM (1994) Molecular mechanism of action of Pb and Zn2+ on water oxidizing complex of photosystem II. FEBS Lett 350:296–298

    Article  PubMed  CAS  Google Scholar 

  • Repetto O, Bestel-Corre G, Dumas-Gaudot E, Berta G, Gianinazzi-Pearson V, Gianinazzi S (2003) Targeted proteomics to identify cadmium-induced protein modification in Glomus mosseae-inoculated pea roots. New Phytol 157:555–567

    Article  CAS  Google Scholar 

  • Rivera-Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasser JR, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 371:1177–1185

    Article  Google Scholar 

  • Rivera-Becerril F, van Tuinen D, Martin-Laurent F, Metwally A, Dietz KJ, Gianinazzi S, Gianinazzi-Pearson V (2005) Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza 16:51–60

    Article  PubMed  CAS  Google Scholar 

  • Rivetta A, Negrini N, Cocucci M (1997) Involvement of Ca2+ calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant Cell Environ 20:600–608

    Article  CAS  Google Scholar 

  • Robinson NJ, Urwin PE, Robinson PJ, Jackson PJ (1994) Gene expression in relation to metal toxicity and tolerance. In: Basra AJ (ed) Stress induced gene expression in plants. Harwood Academic Publishers, Amsterdam, pp 209–248

    Google Scholar 

  • Rodriguez-Ortiz JC, Valdez-Cepeda RD, Lara-Mireles JL, Rodriguez-Fuentes H, Vazquez-Alvarado RE, Magallanes-Quintanar R, Garcia-Hernandez JL (2006) Soil nitrogen fertilization effects on phytoextraction of cadmium and lead by tobacco (Nicotiana tabaccum L.). Biorem J 10(3):105–114

    Article  CAS  Google Scholar 

  • Romanowsk E, Igamberdiev U, Parys E, Gardestron P (2002) Stimulation of respiration by Pb2+ in detached leaves and mitochondria of C3 and C4 plants. Physiol Plant 116:148–154

    Article  Google Scholar 

  • Saito K, Kurosawa M, Tatsuguchi K, Takagi Y, Murakoshi I (1994) Modulation of cysteine biosynthesis in the chloroplasts of transgenic tobacco overexpressing cysteine synthesis (O-acetylserine(thiol)lyase). Plant Physiol 106:887–895

    Article  PubMed  CAS  Google Scholar 

  • Salt DEM, Blaylock NP, Kumar V, Dushenkov BD, Ensley I, Chet RI (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  PubMed  CAS  Google Scholar 

  • Sanita di Toppi L, Gabbrielli R (1999) Response of cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Saxena KB (2008) Genetic improvement of pigeon pea—a review. Trop Plant Biol 1:159–178

    Article  Google Scholar 

  • Scheublin TR, van der Heijden MGA (2006) Arbuscular mycorrhizal fungi colonize non-fixing nodules of several legume species. New Phytol 172:732–738

    Article  PubMed  Google Scholar 

  • Seregin IV, Ivanov VB, Shpigun LK (2003) Distribution and toxic effects of cadmium and lead on maize roots. Russ J Plant Physiol 51(4):525–533

    Article  Google Scholar 

  • Shalaby AM (2003) Responses of arbuscular mycorrhizal fungal spores isolated from heavy metal-polluted and unpolluted soil to Zn, Cd, Pb and their interactions in vitro. Pak J Biol Sci 6(16):1416–1422

    Article  Google Scholar 

  • Shvaleva A, de La Peña TC, Rincón A, Morcillo CN, de la Torre VSG, Lucas MM, Pueyo JJ (2010) Flavodoxin overexpression reduces cadmium-induced damage in alfalfa root nodules. Plant Soil 326:109–121

    Article  CAS  Google Scholar 

  • Singh S, Anjum NA, Khan NA, Nazar R (2008) Metal-binding peptides and antioxidant defence system in plants: significance in cadmium tolerance. In: Khan NA, Singh S (eds) Abiotic stress and plant responses. IK International, New Delhi, pp 159–189

    Google Scholar 

  • Singhal RK, Anderson ME, Meister A (1987) Glutathione, a first line defence against cadmium toxicity. FASEB J 1:220–223

    PubMed  CAS  Google Scholar 

  • Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Van Laere A, Vangronsveld J (2005) Induction of oxidative stress and antioxidant mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43:437–444

    Article  PubMed  CAS  Google Scholar 

  • Szalai G, Kellos T, Galiba G, Kocsy G (2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J Plant Growth Regul 28:66–80

    Article  CAS  Google Scholar 

  • Ting YP, Lawson F, Prince IG (1991) Uptake of cadmium and zinc by alga Chlorella vulgaris: multiion situation. Biotechnol Bioeng 37:445–455

    Article  PubMed  CAS  Google Scholar 

  • Trivedi S, Erdei L (1992) Effects of cadmium and lead on the accumulation of Ca2+ and K+ and on the influx and translocation of K+ in wheat of low and high K+ status. Physiol Plant 84:94–100

    Article  CAS  Google Scholar 

  • Tudoreanu L, Phillips CJC (2004) Modeling cadmium uptake and accumulation in plants. Adv Agron 84:121–157

    Article  CAS  Google Scholar 

  • Turnau K, Kottke I, Oberwinkler F (1993) Element localization in mycorrhizal roots of Pteridium aquinilium L. Kuhn collected from experimental plots treated with cadmium dust. New Phytol 123:313–324

    Article  CAS  Google Scholar 

  • Uveges JL, Corbett AL, Mal TK (2002) Effects of Pb contamination on the growth of Lythrum salicaria. Environ Pollut 120:319–323

    Article  PubMed  CAS  Google Scholar 

  • Van der Maesen LJG (1980) India is the native home of the pigeonpea. In: Arends JC, Boelama G, de Grant CT, Leeuwenberg A (eds) Libergratulatorious in Honerem HCD de Wit. Agricultural University Miscellaneous Paper 19. Wageningen, The Netherlands, pp 257–262

    Google Scholar 

  • Vange V, Hevchand I, Vandvik V (2004) Does seed mass and family affect germination and juvenile performance in Knautia arvensis? A study using failure time methods. Acta Oecol 25(3):169–178

    Article  Google Scholar 

  • Vassilev A (2002) Physiological and agroecological aspects of cadmium interactions with barley plants: an overview. J Central Eur Agric 4:65–75

    Google Scholar 

  • Vivas A, Azcon R, Biro B, Barea JM, Ruiz-Lozano JM (2003) Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pretense L. under lead toxicity. Can J Microbiol 49:577–588

    Article  PubMed  CAS  Google Scholar 

  • Vogel-Mikus K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonization of pennycress Thalaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut 133:233–242

    Article  PubMed  CAS  Google Scholar 

  • Vosatka M, Rydlova J, Sudova R, Vohnik M (2006) Mycorrhizal fungi as helping agents in phytoremediation of degraded and contaminated soils. In: Mackova M, Dowling DN, Maeck T (eds) Phytoremediation Rhizoremediation, 1st ed. Springer-Verlag, Berlin, pp 237–257

    Chapter  Google Scholar 

  • Walker WM, Miller JE, Hassett JJ (1977) Effect of lead and cadmium upon the calcium, magnesium, potassium and phosphorus concentration in young corn plants. Soil Sci 124:145–151

    Article  CAS  Google Scholar 

  • Wang X, Zhou QX (2003) Distribution of forms for cadmium, lead, copper and zinc in soil land its influences by modifier. J Agr Environ Sci 22:541–545

    CAS  Google Scholar 

  • Wang FY, Lin XG, Yin R (2007) Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil. Int J Phytorem 9(4):345–353

    Article  CAS  Google Scholar 

  • Wei SH, Zhou QX (2004) Identification of weed species with hyperaccumulative characteristics of heavy metals. Prog Nat Sci 14:495–503

    Article  CAS  Google Scholar 

  • Weissenhorn I, Leyval C (1995) Root colonization of maize by a Cd-sensitive and a Cd-tolerant Glomus mosseae and cadmium uptake in sand culture. Plant Soil 175:233–238

    Article  CAS  Google Scholar 

  • Wierzbicka M (1994) Resumption of mitotic activity in Allium cepa root tips during treatment with lead salts. Environ Exp Bot 34:173–180

    Article  CAS  Google Scholar 

  • Yen CL, Mar MH, Zeisel SH (1999) Choline deficiency-induced apoptosis in PC12 cells is associated with diminished membrane phosphatidylcholine and activation of a caspase. FASEB J 13:135–142

    PubMed  CAS  Google Scholar 

  • Younis M (2007) Responses of Lablab purpureus-Rhizobium symbiosis to heavy metals in pot and field experiments. World J Agric Sci 3(1):111–122

    Google Scholar 

  • Yu X, Cheng J, Wong MH (2005) Earthworm-mycorrhiza interaction on Cd uptake and growth of ryegrass. Soil Biol Biochem 37:195–201

    Article  CAS  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants: a review. Gene 179:21–30

    Article  PubMed  CAS  Google Scholar 

  • Zornoza P, Vazquez S, Esteban E, Fernandez-Pascual M, Carpena R (2002) Cadmium-stress in nodulated white lupin: strategies to avoid toxicity. Plant Physiol Biochem 40:1003–1009

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The financial support provided by the University Grant Commission, New Delhi, India, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neera Garg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garg, N., Aggarwal, N. Effects of Interactions Between Cadmium and Lead on Growth, Nitrogen Fixation, Phytochelatin, and Glutathione Production in Mycorrhizal Cajanus cajan (L.) Millsp.. J Plant Growth Regul 30, 286–300 (2011). https://doi.org/10.1007/s00344-010-9191-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-010-9191-7

Keywords

Navigation