Skip to main content

Advertisement

Log in

Regulation in Plant Stress Tolerance by a Potential Plant Growth Regulator, 5-Aminolevulinic Acid

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Exogenous application of different plant growth regulators is a well-recognized strategy to alleviate stress-induced adverse effects on different crop plants by regulating a variety of physiobiochemical processes such as photosynthesis, chlorophyll biosynthesis, nutrient uptake, antioxidant metabolism, and protein synthesis, which are directly or indirectly involved in the mechanism of stress tolerance. Of various environmental factors, salinity, drought, and extreme temperature (low or high) considerably diminish plant growth and yield by modulating endogenous levels as well as signaling pathways of plant hormones. Of various plant hormones/regulators, a potential plant growth regulator, 5-aminolevulinic acid (ALA), is known to be effective in counteracting the injurious effects of various abiotic stresses in plants. Until now the mechanisms behind ALA regulation of growth under stress have not been fully elucidated. It is also not yet clear how far growth and yield in different crops can be promoted by exogenous application of ALA and whether this ALA-induced growth and yield promotion is cost-effective. Thus, in this review we discuss at length the effects of ALA in regulating growth and development in plants under a variety of abiotic stress conditions, including salinity, drought, and temperature stress. Furthermore, advances in the functional and regulatory interactions of this plant growth regulator with plant stress tolerance, as well as the effective mode of exogenous application of ALA in inducing stress tolerance in plants are also comprehensively discussed in this review. In the future, overaccumulation of ALA in plants through manipulation of gene(s) could enhance plant stress tolerance. Thus, genetic manipulation of plants with the goal of attaining increased synthesis/accumulation of ALA and hence improved stress tolerance under stress conditions is an important area for research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akram NA, Ashraf M (2011a) Pattern of accumulation of inorganic elements in sunflower (Helianthus annuus L.) plants subjected to salt stress and exogenous application of 5-aminolevulinic acid. Pak J Bot 43:521–530

    CAS  Google Scholar 

  • Akram NA, Ashraf M (2011b) Improvement in growth, chlorophyll pigments and photosynthetic performance in salt-stressed plants of sunflower (Helianthus annuus L.) by foliar application of 5-aminolevulinic acid. Agrochimica 55:94–104

    CAS  Google Scholar 

  • Akram NA, Shahbaz M, Ashraf M (2007) Relationship of photosynthetic capacity and proline accumulation with the growth of differently adapted populations of two potential grasses (Cynodon dactylon (L.) Pers. and Cenchrus ciliaris L.) to drought stress. Pak J Bot 39:777–786

    Google Scholar 

  • Akram NA, Shahbaz M, Ashraf M (2008) Nutrient acquisition in differentially adapted populations of Cynodon dactylon (L.) Pers. and Cenchrus ciliaris L. under drought stress. Pak J Bot 40:1433–1440

    CAS  Google Scholar 

  • Akram NA, Ashraf M, Al-Qurainy F (2011) Aminolevulinic acid-induced changes in yield and seed-oil characteristics of sunflower (Helianthus annuus L.) plants under salt stress. Pak J Bot 43:2845–2852

    CAS  Google Scholar 

  • Akram NA, Ashraf M, Al-Qurainy F (2012) Aminolevulinic acid-induced regulation in some key physiological attributes and activities of antioxidant enzymes in sunflower (Helianthus annuus L.) under saline regimes. Sci Hortic 142:143–148

    Article  CAS  Google Scholar 

  • Al-Khateeb SA (2006) Promotive effect of 5-aminolevulinic acid on growth, yield and gas exchange capacity of barley (Hordeum Vulgare L.) grown under different irrigation regimes. J King Saud Univ Agric Sci 18:103–111

    Google Scholar 

  • Al-Khateeb AA, Al-Khateeb SA, Okawara R, Al-Abdoulhady IA (2006) Promotive effects of 5-aminolevulinic acid (5-ALA) on fruit yield and quality of date palm cv Khalas. J Biol Sci 6:1118–1121

    Article  CAS  Google Scholar 

  • Almeselmani M, Deshmukh PS, Chinnusamy V (2012) Effects of prolonged high temperature stress on respiration, photosynthesis and gene expression in wheat (Triticum aestivum L.) varieties differing in their thermotolerance. Plant Stress 6:25–32

    Google Scholar 

  • Al-Thabet SS (2006) Promotive effect of 5-aminolevulinic acid on growth and yield of wheat grown under dry conditions. J Agron 5:45–49

    Article  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27:744–752

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Akram NA, Arteca RN, Foolad MR (2010a) The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit Rev Plant Sci 29:162–190

    Article  CAS  Google Scholar 

  • Ashraf MA, Ashraf M, Ali Q (2010b) Response of two genetically diverse wheat cultivars to salt stress at different growth stages: leaf lipid peroxidation and phenolic contents. Pak J Bot 42:559–566

    CAS  Google Scholar 

  • Ashraf M, Akram NA, Al-Qurainy F, Foolad MR (2011) Drought tolerance: roles of organic osmolytes, growth regulators, and mineral nutrients. Adv Agron 111:249–296

    Article  CAS  Google Scholar 

  • Athar HR, Ashraf M (2005) Photosynthesis under drought stress. In: Pessarakli M (ed) Photosynthesis. Taylor and Francis, New York, pp 841–867

    Google Scholar 

  • Atteia A, van Lis R, Beale SI (2005) Enzymes of the heme biosynthetic pathway in the nonphotosynthetic alga Polytomella sp. Eukaryot Cell 4:2087–2097

    Article  PubMed  CAS  Google Scholar 

  • Awad MA (2008) Promotive effects of a 5-aminolevulinic acid-based fertilizer on growth of tissue culture-derived date palm plants (Phoenix dactylifera L.) during acclimatization. Sci Hortic 118:48–52

    Article  CAS  Google Scholar 

  • Balestrasse KB, Tomaro ML, Batlle A, Noriega GO (2010) The role of 5-aminolevulinic acid in the response to cold stress in soybean plants. Phytochemistry 71:2038–2045

    Article  PubMed  CAS  Google Scholar 

  • Bali S, Lawrence AD, Lobo SA, Saraiva LM, Golding BT, Palmer DJ, Howard MJ, Ferguson SJ, Warren MJ (2011) Molecular hijacking of siroheme for the synthesis of heme and d1 heme. Proc Nat Acad Sci USA 108:18260–18265

    Article  PubMed  CAS  Google Scholar 

  • Beale SI (1970) The biosynthesis of δ-aminolevulinic acid in chlorella. Plant Physiol 45:504–506

    Article  PubMed  CAS  Google Scholar 

  • Beale SI (1990) Biosynthesis of the tetrapyrrole pigment precursor, 5-aminolevulinic acid from glutamate. Plant Physiol 93:1273–1279

    Article  PubMed  CAS  Google Scholar 

  • Beale SI, Castelfranco PA (1974) The biosynthesis of δ-aminolevulinic acid in higher plants: I. accumulation of δ-aminolevulinic acid in greening plant tissues. Plant Physiol 53:291–296

    Article  PubMed  CAS  Google Scholar 

  • Becerril JM, Duke SO (1989) Protoporphyrin IX content correlates with activity of photobleaching herbicides. Plant Physiol 90:1175–1181

    Article  PubMed  CAS  Google Scholar 

  • Bogorad L (1966) The biosynthesis of chlorophylls. In: Vernon LP, Seeley GR (eds) The chlorophylls. Academic Press, New York, pp 481–510

    Google Scholar 

  • Bogorad L (1967) Aspects of chloroplast assembly. In: Vogel HJ, Lampen JO, Bryson V (eds) Organizational biosynthesis. Academic Press, New York, pp 395–418

    Chapter  Google Scholar 

  • Bottomiley SS, Mithee GAS (1968) Characterization and measurement of aminoaevulnate synthetase in bone marrow cell mitochondria. Biochim Biophys Acta 159:27–37

    Article  Google Scholar 

  • Brunham BF, Lascelles J (1963) Control of porphyrin biosynthesis through a negative-feedback mechanism. Studies with preparations of δ-aminolaevulate synthetase and δ-aminolaevulate dehydratase from Rhodopseudomonas spheroides. Biochem J 87:462–472

    Google Scholar 

  • Chakraborty N, Tripathy BC (1990) Expression of 5-aminolevulinic acid induced photodynamic damage to the thylakoid membranes in dark sensitized by brief pre-illumination. J Biosci 15:199–204

    Article  CAS  Google Scholar 

  • Chakraborty N, Tripathy BC (1992) Involvement of singlet oxygen in 5-aminolevulinic acid-induced photodynamic damage of cucumber (Cucumis sativus L.) chloroplasts. Plant Physiol 98:7–11

    Article  PubMed  CAS  Google Scholar 

  • Cornah JE, Terry MJ, Smith AG (2003) Green or red: what stops the traffic in the tetrapyrrole pathway? Trends Plant Sci 8:224–230

    Article  PubMed  CAS  Google Scholar 

  • Czarnecki O, Hedtke B, Melzer M, Rothbart M, Richter A, Schröter Y, Pfannschmidt T, Grimm B (2011) An Arabidopsis GluTR-binding protein mediates spatial separation of 5-aminolevulinic acid synthesis in chloroplasts. Plant Cell 23:4476–4491

    Article  PubMed  CAS  Google Scholar 

  • Dubey RS (2005) Photosynthesis in plants under stressful conditions. In: Pessarakli M (ed) Photosynthesis. CRC Press, New York, pp 717–718

    Google Scholar 

  • Duggan JX, Rebeiz CA (1982) Chloroplast biogenesis. Conversion of divinyl chlorophyllide a to monovinyl chlorophyllide a in vivo and in vitro. Plant Sci Lett 27:137–145

    Article  CAS  Google Scholar 

  • Duke SO, Rebeiz CA (1994) Porphyrin biosynthesis as a tool in pest management: an overview. In: Duke SO, Rebeiz CA (eds) Porphyric pesticides: chemistry, toxicology and pharmaceutical applications. American Chemical Society, Washington, pp 1–17

    Chapter  Google Scholar 

  • Elrod SL, Jones A, Berka RM, Cherry JR (2000) Cloning of the Aspergillus oryzae 5-aminolevulinate synthase gene and its use as a selectable marker. Curr Genet 38:291–298

    Article  PubMed  CAS  Google Scholar 

  • Garnick S, Sassa S (1971) δ-Aminolevulinic acid synthetase and control of heme and chlorophyll synthesis. In: Vogel HJ (ed) Metabolic regulations. Academic Press, New York, p 141

    Google Scholar 

  • Gibson HD, Laver WG, Neuberger A (1958) Initial stages in the biosynthesis of porphyrins. II. The formation of 5-aminolevulinic acid from glycine and succinyl-CoA by particles from chicken erythrocytes. Biochem J 70:71–81

    PubMed  CAS  Google Scholar 

  • Guo X, Li Y, Yu X (2012) Promotive effects of 5-aminolevulinic acid on photosynthesis and chlorophyll fluorescence of tomato seedlings under suboptimal low temperature and suboptimal photon flux density stress. Hortic Sci 39:97–99

    Google Scholar 

  • Hartel H, Lokstein H, Grimm B, Rank B (1996) Kinetic studies on the xanthophyll cycle in barley leaves. Influence of antenna size and relations to non-photochemical chlorophyll fluorescence quenching. Plant Physiol 110:471–482

    PubMed  Google Scholar 

  • Haworth P, Hess FD (1988) The generation of singlet oxygen (1O2) by the nitro-diphenyl ether oxyfluorfen is independent of photosynthesis. Plant Physiol 86:672–676

    Article  PubMed  CAS  Google Scholar 

  • Hodgins RR, van Huystee RB (1986) Porphyrin metabolism in chill stressed maize (Zea mays L.). J Plant Physiol 125:325–336

    Article  CAS  Google Scholar 

  • Hopf FR, Whitten DG (1978) Chemical transformations involving photoexcited porphyrins and metalloporphyrins. In: Dolphin D (ed) The porphyrins. Academic Press, New York, pp 191–195

    Google Scholar 

  • Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M (1997a) New physiological effects of 5-aminolevulinic acid in plants: the increase of photosynthesis, chlorophyll content, and plant growth. Biosci Biotech Biochem 61:2025–2028

    Article  CAS  Google Scholar 

  • Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M (1997b) Promotive effects of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regul 22:109–114

    Article  CAS  Google Scholar 

  • Hotta Y, Tanaka T, Luo BS, Takeuchi Y, Konnai M (1998) Improvement of cold resistance in rice seedlings by 5-aminolevulinic acid. J Pest Sci 23:29–33

    Article  CAS  Google Scholar 

  • Hudson D, Guevara D, Yaish MW, Hannam C, Long N (2011) GNC and CGA1 modulate chlorophyll biosynthesis and glutamate synthase (GLU1/Fd-GOGAT) expression in Arabidopsis. PLoS ONE 6:e26765

    Article  PubMed  CAS  Google Scholar 

  • Iwai K, Saito A, van Leeuwen J, Tanaka T, Takeuchi Y (2000) A new functional fertilizer containing 5-aminolevulinic acid promoted hydroponically-grown vegetables in the Netherlands. ISHS Acta Horticulturae 697: International symposium on soilless culture and hydroponics

  • Javed N, Ashraf M, Akram NA, Al-Qurainy F (2011) Alleviation of adverse effects of drought stress on growth and some potential physiological attributes in maize (Zea mays L.) by seed electromagnetic treatment. Photochem Photobiol 87:1354–1362

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Back K (2005) Herbicidal and antioxidant responses of transgenic rice overexpressing Myxococcus xanthus protoporphyrinogen oxidase. Plant Physiol Biochem 43:423–430

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Yang K, Lee D, Back K (2004) Expression of Bradyrhizobium japonicum 5-aminolevulinic acid synthase induces severe photodynamic damage in transgenic rice. Plant Sci 167:789–795

    Article  CAS  Google Scholar 

  • Kamran M, Shahbaz M, Ashraf M, Akram NA (2009) Alleviation of drought-induced adverse effects in spring wheat (Triticum aestivum L.) using proline as pre-sowing seed treatment. Pak J Bot 41:621–632

    Google Scholar 

  • Kanwal H, Ashraf M, Shahbaz M (2011) Assessment of salt tolerance of some newly developed and candidate wheat (Triticum aestivum L.) cultivars using gas exchange and chlorophyll fluorescence attributes. Pak J Bot 43:2693–2699

    CAS  Google Scholar 

  • Khripach V, Zhabinskii V, De Groot A (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 86:441–447

    Article  CAS  Google Scholar 

  • Kikuchi G, Kumar A, Talmage P, Shemin D (1958) The enzymatic synthesis of δ-aminolevulinic acid. J Biol Chem 233:1214–1219

    PubMed  CAS  Google Scholar 

  • Korkmaz A, Korkmaz Y (2009) Promotion by 5-aminolevulenic acid of pepper seed germination and seedling emergence under low-temperature stress. Sci Hortic 119:98–102

    Article  CAS  Google Scholar 

  • Korkmaz A, Korkmaz Y, Demirkiran AR (2010) Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. Environ Exp Bot 67:495–501

    Article  CAS  Google Scholar 

  • Kumar AM, Soll D (2000) Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in arabidopsis. Plant Physiol 122:49–56

    Article  PubMed  CAS  Google Scholar 

  • Kumar AM, Chaturvedi S, Soll D (1999) Selective inhibition of HEMA gene expression by photo oxidation in Arabidopsis thaliana. Phytochemistry 51:847–851

    Article  PubMed  CAS  Google Scholar 

  • Li D, Zhang J, Sun W, Li Q, Dai A, Bai J (2011) 5-Aminolevulinic acid pretreatment mitigates drought stress of cucumber leaves through altering antioxidant enzyme activity. Sci Hortic 130:820–828

    Article  CAS  Google Scholar 

  • Liu D, Pei ZF, Naeem MS, Ming DF, Liu HB, Khan F, Zhou WJ (2011) 5-Aminolevulinic acid activates antioxidative defense system and seedling growth in Brassica napus L. under water-deficit stress. J Agron Crop Sci 197:284–295

    Article  CAS  Google Scholar 

  • Lydon J, Duke SO (1988) Porphyrin synthesis is required for photobleaching activity of the p-nitrosubstituted diphenyl ether herbicides. Pestic Biochem Physiol 31:74–83

    Article  CAS  Google Scholar 

  • Maruyama-Nakashita A, Hira MY, Funada S, Fuek S (2010) Exogenous application of 5-aminolevulinic acid increases the transcript levels of sulfur transport and assimilatory genes, sulfate uptake, and cysteine and glutathione contents in Arabidopsis thaliana. Soil Sci Plant Nutr 56:281–288

    Article  CAS  Google Scholar 

  • Memon SA, Hou X, Wang L, Li Y (2009) Promotive effect of 5-aminolevulinic acid on chlorophyll, antioxidative enzymes and photosynthesis of Pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee). Acta Physiol Plant 31:51–57

    Article  CAS  Google Scholar 

  • Mishra SN, Srivastava HS (1983) Stimulation of nitrate reductase activity by delta aminolevulinic acid in excised maize leaves. Experientia 39:1118–1120

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki N, Tanaka R, Grimm B, Masuda T, Moulin M, Smith AG (2010) The cell biology of tetrapyrroles: a life and death struggle. Trends Plant Sci 15:488–498

    Article  PubMed  CAS  Google Scholar 

  • Morales-Payan JP, Stall W (2004) Effects of aminolevulinic acid and acetylthioproline on weed-free and weed-infested St. Augustine turfgrass. In: Proceedings of the Florida state horticultural society, Tallahassee, FL, pp 282–285

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Naeem MS, Jin ZL, Wan ZL, Liu D, Liu HB, Yoneyama K, Zhou WJ (2010) 5-Aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape (Brassica napus L.). Plant Soil 332:405–415

    Article  CAS  Google Scholar 

  • Naeem MS, Rasheed M, Liu D, Jin ZL, Ming DF, Yoneyama K, Takeuchi Y, Zhou WJ (2011) 5-Aminolevulinic acid ameliorates salinity-induced metabolic, water-related and biochemical changes in Brassica napus L. Acta Physiol Plant 33:517–528

    Article  CAS  Google Scholar 

  • Naeem MS, Warusawitharana H, Liu H, Liu D, Ahmad R, Waraich EA, Xu L, Zhou W (2012) 5-Aminolevulinic acid alleviates the salinity-induced changes in Brassica napus as revealed by the ultrastructural study of chloroplast. Plant Physiol Biochem 57:84–92

    Article  PubMed  CAS  Google Scholar 

  • Nagaraj VA, Arumugam R, Chandra NR, Prasad D, Rangarajan PN, Padmanaban G (2009) Localisation of Plasmodium falciparum uroporphyrinogen III decarboxylase of the heme-biosynthetic pathway in the apicoplast and characterization of its catalytic properties. Int J Parasitol 39:559–568

    Article  PubMed  CAS  Google Scholar 

  • Nagata N, Tanaka R, Satoh S, Tanaka A (2005) Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17:233–240

    Article  PubMed  CAS  Google Scholar 

  • Nawaz K, Ashraf M, Akram NA, Al-Qurainy F (2010) Modulation of growth parameters, proline content and mineral nutrients in maize (Zea mays L.) by exogenously applied glycine betaine at different growth stages under salt stress. J Appl Bot Food Qual 83:204–211

    CAS  Google Scholar 

  • Nishihara E, Takahashi K, Nakata N, Tanaka K, Watanabe K (2001) Effect of 5-aminolevulinic acid (ALA) on photosynthetic rate, hydrogen peroxide content, antioxidant level and active oxygen scavenging enzymes in spinach (Spinacia oleracea L.). J Jpn Soc Hortic Sci 70:346–352

    Article  CAS  Google Scholar 

  • Nishihara E, Kondo K, Parvez MM, Takahashi K, Watanabe K, Tanaka K (2003) Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). J Plant Physiol 160:1085–1091

    Article  PubMed  CAS  Google Scholar 

  • Noreen Z, Ashraf M, Akram NA (2010a) Salt-induced modulation in some key physio-biochemical processes and their use as selection criteria in potential vegetable crop pea (Pisum sativum L.). Crop Past Sci 61:369–378

    Article  CAS  Google Scholar 

  • Noreen Z, Ashraf M, Akram NA (2010b) Salt-induced regulation of some key physio-biochemical phenomena in five diverse cultivars of turnip (Brassica rapa L.). J Agron Crop Sci 196:273–285

    CAS  Google Scholar 

  • Noreen Z, Ashraf M, Akram NA (2012) Salt-induced regulation of photosynthetic capacity and ion accumulation in some genetically diverse cultivars of radish (Raphanus sativus L.). J Appl Bot Food Qual 85:91–96

    CAS  Google Scholar 

  • Pattanayak GK, Tripathy BC (2011) Overexpression of protochlorophyllide oxidoreductase C regulates oxidative stress in Arabidopsis. PLoS ONE 6:e26532

    Article  PubMed  CAS  Google Scholar 

  • Perveen S, Shahbaz M, Ashraf M (2010) Regulation in gas exchange and quantum yield of photosystem II (PSII) in salt-stressed and non-stressed wheat plants raised from seed treated with triacontanol. Pak J Bot 42:3073–3081

    CAS  Google Scholar 

  • Perveen S, Shahbaz M, Ashraf M (2011) Modulation in activities of antioxidant enzymes in salt stressed and non-stressed wheat (Triticum aestivum L.) plants raised from seed treated with triacontanol. Pak J Bot 43:2463–2468

    CAS  Google Scholar 

  • Perveen S, Shahbaz M, Ashraf M (2012) Changes in mineral composition, uptake and use efficiency of salt stressed wheat (Triticum aestivum L.) plants raised from seed treated with triacontanol. Pak J Bot 44:27–35

    CAS  Google Scholar 

  • Phung T, Jung HI, Park J, Kim J, Back K, Jung S (2011) Porphyrin biosynthesis control under water stress: sustained porphyrin status correlates with drought tolerance in transgenic rice. Plant Physiol 157:1746–1764

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA, Montazer-Zouhoor A, Jopen HJ, Wu SM (1984) Photodynamic herbicides: concepts and phenomenology. Enzyme Microb Technol 6:390–401

    Article  CAS  Google Scholar 

  • Rebeiz CA, Montazer-Zouhoor A, Mayasich JM, Tripathy BC, Wu SM, Rebeiz CC (1987a) Photodynamic herbicides and chlorophyll biosynthesis modulators. In: Heitz JR, Douenum KR (eds), Light activated pesticides, ACS symposium series No. 339. American Chemistry Society, Washington, pp 295–328

  • Rebeiz CA, Montazer-Zouhoor A, Mayasich JM, Tripathy BC, Wu SM, Rebeiz CC (1987b) Photodynamic herbicides. Recent developments and molecular basis of selectivity. CRC Crit Rev Plant Sci 6:385–436

    Article  Google Scholar 

  • Rebeiz CA, Reddy KN, Nandihalli UB, Velu J (1990) Tetrapyrrole-dependent photodynamic herbicides. Photochem Photobiol 52:1099

    Article  CAS  Google Scholar 

  • Richter A, Peter E, Pörs Y, Lorenzen S, Grimm B, Czarnecki O (2010) Rapid dark repression of 5-aminolevulinic acid synthesis in green barley leaves. Plant Cell Physiol 51:670–681

    Article  PubMed  CAS  Google Scholar 

  • Rowe JD, Griffiths WT (1995) Protochlorophyllide reductase in photosynthetic prokaryotes and its role in chlorophyll synthesis. Biochem J 311:417–424

    PubMed  CAS  Google Scholar 

  • Roy CB, Vivekanandan M (1998) Role of aminolevulinic acid in improving biomass production in Vigna catjung, V. mungo and V. radiata. Biol Plant 41:211–215

    Article  CAS  Google Scholar 

  • Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12:30–43

    Article  PubMed  CAS  Google Scholar 

  • Sano S, Granick S (1961) Mitochondrial coproporphyrinogen oxidase and protoporphyrin formation. J Biol Chem 236:1173–1180

    PubMed  CAS  Google Scholar 

  • Sasaki K, Marquez FJ, Nishio N, Nagai S (1995) Promotive effects of 5-aminolevulinic acid on the growth and photosynthesis of Spirulina platensis. J Ferm Bioeng 79:453–457

    Article  Google Scholar 

  • Sasaki K, Watanabe M, Tanaka T, Tanaka T (2002) Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol 58:23–29

    Article  PubMed  CAS  Google Scholar 

  • Sasikala CH, Ramana CH (1995) Biotechnological potentials of anoxygenic phototrophic bacteria. II. Biopolyesters, biopesticide, biofuel, and biofertilizer. Adv Appl Microbiol 41:227–278

    Article  PubMed  CAS  Google Scholar 

  • Senge MO (1993) Recent advances in the biosynthesis and chemistry of chlorophylls. Photochem Phytobiol 57:189–206

    Article  CAS  Google Scholar 

  • Shahbaz M, Ashraf M, Athar HR (2008) Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? Plant Growth Regul 55:51–64

    Article  CAS  Google Scholar 

  • Shahbaz M, Ashraf M, Akram NA, Hanif A, Hameed S, Joham S, Rehman R (2011) Salt-induced modulation in growth, photosynthetic capacity, proline content and ion accumulation in sunflower (Helianthus annuus L.). Acta Physiol Plant 33:1113–1122

    Article  CAS  Google Scholar 

  • Shahbaz M, Ashraf M, Al-Qurainy F, Harris PJC (2012) Salt tolerance in selected vegetable crops. Crit Rev Plant Sci 31:303–320

    Article  CAS  Google Scholar 

  • Shemin D, Russell CS (1953) 5-Aminolevulinic acid, its role in the biosynthesis of porphyrins and purines. J Am Chem Soc 75:4873–4874

    Article  CAS  Google Scholar 

  • Sinclair JC, Sandy J, Delgoda R, Sim E, Noble MEM (2000) Structure of arylamine N-acetyltransferase reveals a catalytic triad. Nat Struct Biol 7:560–564

    Article  PubMed  CAS  Google Scholar 

  • Sugie A, Naydenov N, Mizuno N, Nakamura C, Takumi S (2006) Overexpression of wheat alternative oxidase gene Waox1a alters respiration capacity and response to reactive oxygen species under low temperature in transgenic Arabidopsis. Genes Genet Syst 81:349–354

    Article  PubMed  CAS  Google Scholar 

  • Sun YP, Zhang ZP, Wang LJ (2009) Promotion of 5-aminolevulinic acid treatment on leaf photosynthesis is related with increase of antioxidant enzyme activity in watermelon seedlings under shade condition. Photosynthetica 47:347–354

    Article  CAS  Google Scholar 

  • Surpin M, Larkin RM, Chory J (2002) Signal transduction between the chloroplast and the nucleus. Plant Cell 14:327–338

    Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    Article  CAS  Google Scholar 

  • Takeya H, Tanaka T, Hotta T, Sasaki K (1997) Production methods and applications of 5-aminolevulinic acid. Porphyrins 6:127–135

    Google Scholar 

  • Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346

    Article  PubMed  CAS  Google Scholar 

  • Tanaka R, Tanaka A (2011) Chlorophyll cycle regulates the construction and destruction of the 3 light-harvesting complexes. Biochim Biophys Acta 1807:968–976

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Tanaka A, Tsuji H (1992) Stabilization of apoproteins of light-harvesting chlorophyll-a/b protein complex by feeding 5-aminolevulinic acid under intermittent illumination. Plant Physiol Biochem 30:365–370

    CAS  Google Scholar 

  • Tripathy BC, Rebeiz CA (1986) Chloroplast biogenesis: demonstration of the monovinyl and divinyl monocarboxylic routes of chlorophyll biosynthesis in higher plants. J Biol Chem 261:13556–13564

    PubMed  CAS  Google Scholar 

  • Tripathy BC, Rebeiz CA (1988) Chloroplast biogenesis 601: conversion of divinyl protochlorophyllide to monovinyl protochlorophyllide in green(ing) barley, a dark monovinyl/light divinyl plant species. Plant Physiol 87:89–94

    Article  PubMed  CAS  Google Scholar 

  • Uehlinger P, Zellweger M, Wagnières G, Juillerat-Jeanneret L, van den Bergh H, Lange N (2000) 5-Aminolevulinic acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells. J Photochem Photobiol B: Biol 54:72–80

    Google Scholar 

  • Wang LJ, Jiang WB, Zhang Z, Yao QH, Matsui H, Ohara H (2003) Biosynthesis and physiological activities of 5-aminolevulinic acid (ALA) and its potential application in agriculture. Plant Physiol Commun 39:185–192

    Google Scholar 

  • Wang JJ, Jiang WB, Huang BJ (2004) Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedlings under low light and chilling stress conditions. Physiol Plant 121:258–264

    Article  PubMed  CAS  Google Scholar 

  • Wang JJ, Jiang WB, Liu H, Liu WQ, Kang L, Hou XL (2005) Promotion by 5-aminolevulinic acid of germination of pakchoi (Brassica campestris ssp. Chinensis var. communis Tsen et Lee) seeds under salt stress. J Integr Plant Biol 47:1084–1091

    Article  CAS  Google Scholar 

  • Watanabe K, Tanaka T, Hotta Y, Kuramochi H, Takeuchi Y (2000) Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid. Plant Growth Regul 32:99–103

    Article  CAS  Google Scholar 

  • Willows RD (2004) Chlorophylls. In: Goodman RM (ed) Encyclopaedia of plant and crop science. Marcel Dekker, New York, pp 258–262

    Google Scholar 

  • Xing W, Rajashekar CB (2001) Glycine betaine involvement in freezing tolerance and water stress in Arabidopsis thaliana. Environ Exp Bot 46:21–28

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Chang J, Cheng SY, Zhu J, Li LL, Wang Y, Cheng H (2009) Promotive effect of 5-aminolevulinic acid on the antioxidant system in Ginkgo biloba leaves. Afr J Biotechnol 8:3769–3776

    CAS  Google Scholar 

  • Xu F, Zhu J, Cheng S, Zhang W, Wang Y (2010) Effect of 5-aminolevulinic acid on photosynthesis, yield, nutrition and medicinal values of kudzu (Pueraria phaseoloides). Trop Grasslands 44:260–265

    Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620

    Article  PubMed  CAS  Google Scholar 

  • Yoshida R, Ohta E, Iwai K, Tanaka T, Okada H (2005) Effects of liquid fertilizer containing 5-aminolevulinic acid on thickening growth in tulip bulbs. Proceedings of the 32nd annual meeting of the plant growth regulation society of America, Newport Beach, CA, USA, pp 91–94

  • Youssef T, Awad MA (2008) Mechanisms of enhancing photosynthetic gas exchange in date palm seedlings (Phoenix dactylifera L.) under salinity stress by a 5-aminolevulinic acid-based fertilizer. J Plant Growth Regul 27:1–9

    Article  CAS  Google Scholar 

  • Zavgorodnyaya A, Papenbrock J, Grimm B (1997) Yeast 5-aminolevulinate synthase provides additional chlorophyll precursor in transgenic tobacco. Plant J 12:169–178

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, He P, Yu Z, Du D, Wei P (2010) Effect of exogenous Ca2+, ALA, SA and Spd on seed germination and physiological characteristics of Perilla frutescens seedlings under NaCl stress. China J Chin Mater Med 35:3260–3265

    Google Scholar 

  • Zhang ZJ, Li HZ, Zhou WJ, Takeuchi Y, Yoneyama K (2006) Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. Plant Growth Regul 49:27–34

    CAS  Google Scholar 

  • Zhang WF, Zhang F, Raziuddin R, Gong HJ, Yang ZM, Lu L, Ye QF, Zhou WJ (2008) Effects of 5-aminolevulinic acid on oilseed rape seedling growth under herbicide toxicity stress. J Plant Growth Regul 27:159–169

    Article  CAS  Google Scholar 

  • Zhang J, Li DM, Gao Y, Yu B, Xia CX, Bai JG (2012) Pretreatment with 5-aminolevulinic acid mitigates heat stress of cucumber leaves. Biol Plant 56:780–784

    Article  CAS  Google Scholar 

  • Zhen A, Bie ZL, Huang Y, Liu ZX, Fan ML (2012) Effects of 5-aminolevulinic acid on the H2O2 content and antioxidative enzyme gene expression in NaCl-treated cucumber seedlings. Biol Plant 56(3):566–570

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nudrat Aisha Akram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akram, N.A., Ashraf, M. Regulation in Plant Stress Tolerance by a Potential Plant Growth Regulator, 5-Aminolevulinic Acid. J Plant Growth Regul 32, 663–679 (2013). https://doi.org/10.1007/s00344-013-9325-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-013-9325-9

Keywords

Navigation