Skip to main content
Log in

Dose-Dependent Effects of Coronatine on Cotton Seedling Growth Under Salt Stress

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Coronatine (COR) is a chlorosis-inducing, non-host-specific phytotoxin produced by several members of the Pseudomonas syringae group of pathovars. It acts as a molecular mimic of methyl jasmonate. This study investigated the dose-dependent effects of COR on cotton seedling (Gossypium hirsutum L. cv. CCRI 45) growth under normal or salt-stressed conditions. The results demonstrated that salt stress inhibited growth of cotton seedlings, decreased chlorophyll content and net photosynthesis, altered activity of antioxidant enzymes (Superoxide dismutase, Catalase, and peroxidases), and ion balance within the stressed seedlings. Pretreatment with a low concentration of COR (0.01 μmol/L) increased seedling biomass under unstressed and salt-stressed conditions by increasing chlorophyll contents, net photosynthesis and PSII function, elevating the activity of antioxidative enzymes and protein content, improving Na+ exclusion, K+ retention, and the K+/Na+ ratio, and reducing lipid peroxidation causing membrane damage. However, high concentrations of COR (1 μmol/L) decreased seedling biomass under unstressed conditions, and exacerbated the above-mentioned adverse effects of salt stress by inhibiting the activity of antioxidative enzymes and photosynthesis, enhancing chlorophyll degradation and lipid peroxidation causing membrane damage. These results indicated that COR has dose-dependent effects on cotton growth. A low concentration (0.01 μmol/L) of COR improved seedling growth and alleviated the inhibition due to salt stress. However, a higher concentration (1 μmol/L) of COR inhibited seedling growth and aggravated salt stress in cotton seedling under salt-stressed conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agastian P, Kingsley SJ, Vivekanandan M (2000) Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica 38:287–290

    Article  CAS  Google Scholar 

  • Ai L, Li ZH, Xie ZX, Tian XL, Eneji AE, Duan LS (2008) Coronatine alleviates polyethylene glycol-induced water stress in two rice (Oryza sativa L.) cultivars. J Agron Crop Sci 194:360–368

    Article  CAS  Google Scholar 

  • Akram NA, Ashraf M (2013) Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid. J Plant Growth Gegul 32:663–679

    Article  CAS  Google Scholar 

  • Anjum SA, Wang L, Farooq M, Xue L, Ali S (2011) Fulvic acid application improves the maize performance under well-watered and drought conditions. J Agron Crop Sci 197:409–417

    Article  CAS  Google Scholar 

  • Ashraf M (2002) Salt tolerance of cotton: some new advances. Crit Rev Plant Sci 21:1–30

    Article  CAS  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Ahmad S (2000) Influence of sodium chloride on ion accumulation, yield components and fiber characteristics in salt-tolerant and salt-sensitive lines of cotton (Gossypium hirsutum L.). Field Crops Res 66:115–127

    Article  Google Scholar 

  • Ashraf M, Bashir A (2003) Salt stress induced changes in some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance. Flora 1986:486–489

    Article  Google Scholar 

  • Attaran E, Major IT, Cruz JA, Rosa BA, Koo AJ, Chen J, Kramer DM, He SY, Howe GA (2014) Temporal dynamics of growth and photosynthesis suppression in response to jasmonate signaling. Plant Physiol 165(3):1302–1314. doi:10.1104/pp.114.239004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bender CL, Alarcon CF, Gross DC (1999) Pseudomonas syringae phytotoxins: mode of action, regulation and biosynthesis by peptide and polypeptide synthetases. Microbiol Mol Biol Rev 63:266–292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benedetti CE, Arruda P (2002) Altering the expression of the chlorophyllase gene ATHCOR1 in transgenic Arabidopsis caused changes in the chlorophyll-to-chlorophyllide ratio. Plant Physiol 128:1255–1263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benedetti CE, Costa CL, Turcinelli SR, Arruda P (1998) Differential expression of a novel gene in response to coronatine, methyl jasmonate, and wounding in the Coi1 mutant of Arabidopsis. Phant Physiol 116:1037–1042

    Article  CAS  Google Scholar 

  • Bor M, Ozdemir F, Tu`rkan I (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugarbeet Beta vulgaris L. and wild beet Beta maritime L. Plant Sci 164:77–84

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brooks DM, Hernandez-Guzman G, Kloek AP, Alarcon-Chaidez F, Sreedharan A, Rangaswamy V, Penaloza-Vazquez A, Bender CL, Kunkel BN (2004) Identification and characterization of a well-defined series of coronatine biosynthetic mutants of Pseudomonas syringae pv. tomato strain DC3000. Mol Plant-Microbe Interact 17:162–174

    Article  CAS  PubMed  Google Scholar 

  • Brooks DM, Bender CL, Kunkel BN (2005) The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defenses in Arabidopsis thaliana. Mol Plant Pathol 6:629–639

    Article  CAS  PubMed  Google Scholar 

  • Ceylan HA, Türkan I, Sekmen AH (2013) Effect of coronatine on antioxidant enzyme response of chickpea roots to combination of PEG-induced osmotic stress and heat stress. J Plant Growth Regul 32:72–82

    Article  CAS  Google Scholar 

  • Chaum S, Kirdmanee C (2009) Effect of salt stress on proline accumulation, photosynthetic ability and growth characters in two maize cultivars. Pak J Bot 41:87–98

    CAS  Google Scholar 

  • Chen ZH, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazp I, Zhou MX, Palmgren MG, Newman IA, Shabala S (2007) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol 145:1714–1725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen ZH, Shabala S, Mendham N, Newman I, Zhang GP, Zhou MX (2008) Combining ability of salinity tolerance on the basis of NaCl-induced K+ flux from roots of barley. Crop Sci 48:1382–1388

    Article  CAS  Google Scholar 

  • Cintas NA, Koike ST, Bull CT (2002) A new pathovar, Pseydomonas syringae pv. alisalensis, proposed for the causal agent of bacterial blight of broccoli and broccoli raab. Plant Dis 86:992–998

    Article  Google Scholar 

  • Coskun D, Britto DT, Jean YK, Kabir I, Tolay I, Torun AA, Kronzucker HJ (2013) K+ efflux and retention in response to NaCl stress do not predict salt tolerance in contrasting genotypes of rice (Oryza sativa L.). PLoS ONE 8:1–16

    Article  Google Scholar 

  • Cuin TA, Shabala S (2007) Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant Cell Environ 30:875–885

    Article  CAS  PubMed  Google Scholar 

  • Cuin TA, Bose J, Stefano G, Jha D, Tester M, Mancuso S, Shabala S (2011) Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods. Plant Cell Environ 34:947–961

    Article  CAS  PubMed  Google Scholar 

  • Darkó É, Fodor J, Dulai S, Ambrus H, Szenzenstein A, Király Z, Barnabás B (2011) Improved cold and drought tolerance of doubled haploid maize plants selected for resistance to prooxidant tert-Butyl hydroperoxide. J Agron Crop Sci 197:454–465

    Article  Google Scholar 

  • Dong HZ, Li WJ, Tang W, Zhang DM (2009) Early plastic mulching increases stand establishment and lint yield of cotton in saline fields. Field Crops Res 111:269–275

    Article  Google Scholar 

  • Dong HZ, Kong XQ, Luo Z, Li WJ, Xin CS (2010) Unequal salt distribution in the root zone increases growth and yield of cotton. Eur J Agron 33:285–292

    Article  CAS  Google Scholar 

  • Feys BJF, Benedetti CE, Penfold CN, Turner JG (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6:751–759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J (2012) Photosynthetic control of electron transport and the regulation of gene expression. J Exp Bot 63:1637–1661

    Article  CAS  PubMed  Google Scholar 

  • Geng XQ, Jin L, Shimada M, Kim MG, Mackey D (2014) The phytotoxin coronatine is a multifunctional component of the virulence armament of Pseudomonas syringae. Planta. doi:10.1007/s00425-014-2151-x

    PubMed Central  Google Scholar 

  • Gómez-Cadenas A, Arbona V, Jacas J, Primo-Millo E, Talon M (2003) Abscission and increases salt tolerance in citrus plants. J Plant Growth Regul 21:234–240

    Article  Google Scholar 

  • Horvath E, Pal M, Szalai G, Paldi E, Janda T (2007) Exogenous 4-hydroxybenzoic acid and salicylic and modulate the effect of short-term drought and freezing stress on wheat plants. Biol Plant 5:1480–1487

    Google Scholar 

  • Ishiga Y, Uppalapati SR, Ishiga T, Elavarthi S, Martin B, Bender CL (2009) The phytotoxin coronatine induces light-dependent reactive oxygen species in tomato seedlings. New Phytol 181:147–160

    Article  CAS  PubMed  Google Scholar 

  • Jiang LJ, Duan LS, Tian XL, Wang BM, Zhang HF, Zhang MC, Li ZH (2006) NaCl salinity stress decreased Bacillus thuringiensis (Bt) protein content of transgenic Bt cotton (Gossypium hirsutum L.) seedlings. Environ Exp Bot 55:315–320

    Article  CAS  Google Scholar 

  • Kariola T, Brader G, Li J, Palva ET (2005) Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. Plant Cell 17:282–294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008) COI 1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci USA 105:7100–7105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kenyon JS, Turner JG (1990) Physiological changes in Nicotiana tobacum leaves during development of chlorosis caused by coronatine. Physiol Mol Plant Pathol 37:463–477

    Article  CAS  Google Scholar 

  • Kenyon JS, Turner JG (1992) The stimulation of ethylene synthesis in Nicotiana tabacum leaves by the phytotoxin coronatine. Plant Physiol 100:219–224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kong XQ, Luo Z, Dong HZ, Eneji AE, Li WJ (2011) Effect of non-uniform root zone salinity on water use, Na+ recirculation, and Na+ and H+ flux in cotton. J Exp Bot 26:1–12

    Google Scholar 

  • Kraus TE, Mckersie BD, Fletcher RA (1995) Paclobutrazole induced tolerance of wheat leaves to paraquat may involve antioxidant enzyme activity. J Plant Physiol 145:570–576

    Article  CAS  Google Scholar 

  • Liszkay A, van der Zalm E, Schopfer P (2004) Production of reactive oxygen intermediates (O2, H2O2, OH) by maize roots and their role in wall loosening and elongation growth. Plant Phys 136:3114–3123

    Article  CAS  Google Scholar 

  • Mehta P, Jajoo A, Mathur S, Bharti S (2010) Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiol Biochem 48:16–20

    Article  CAS  PubMed  Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  • Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial disease. Ann Rev Phytopathol 46:101–122

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Noriega G, Cruz DS, Batlle A, Tomaro M, Balestrasse K (2012) Heme oxygenase is involved in the protection exerted by jasmonic acid against cadmium stress in soybean roots. J Plant Growth Regul 31:79–89

    Article  CAS  Google Scholar 

  • Palmer DA, Bender CL (1995) Ultrastructure of tomato leaf tissue treated with the pseudomonad phytotoxin coronatine and comparison with methyl jasmonate. Mol Plant-Microbe Interact 8:683–692

    Article  CAS  Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004) Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physi 161:531–542

    Article  CAS  Google Scholar 

  • Percey WJ, Shabala L, Breadmore MC, Guijt RM, Bose J, Shabala S (2014) Ion transport in broad bean leaf mesophyll under saline conditions. Planta 240:729–743

    Article  CAS  PubMed  Google Scholar 

  • Reddy AR, Chaitanya KV, Jutur PP, Sumithra K (2004) Differential antioxidative responses to water stress among five mulberry (Morus alba L.) cultivars. Envrion Exp Bot 52:33–42

    Article  CAS  Google Scholar 

  • Schüler G, Mithöfer A, Baldwin T, Berger S, Ebel J, Santos JG, Herrmann G, Hölscher D, Kramell R, Kutchan TM, Maucher H, Schneider B, Stenzel I, Wasternack C, Boland W (2004) Coronalon: a powerful, tool in plant stress physiology. EFBS Lett 563:17–22

    Google Scholar 

  • Shabala S, Babourina O, Newman I (2000) Ion-specific mechanisms of osmoregulation in bean mesophyll cells. J Exp Bot 51:1243–1253

    Article  CAS  PubMed  Google Scholar 

  • Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositolphosphate—potentiated COI1-JAZ co-receptor. Nature 468:400–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silva P, Facanha AR, Tavares RM, Geros H (2010) Role of tonoplast proton pumps and Na+/H+ antiport system in salt tolerance of Populus euphratica oliv. J Plant Growth Regul 29:23–34

    Article  CAS  Google Scholar 

  • Sun J, Chen SL, Dai SX, Wang RG, Li NY, Shen X, Zhou XY, Lu CF, Zheng XJ, Hu ZM, Zhang ZK, Song J, Xu Y (2009) NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol 149:1141–1153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun J, Wang MJ, Ding MQ, Deng SR, Liu MQ, Lu CF, Zhuo XY, Shen X, Zheng XJ, Zhang ZK, Song J, Hu ZM, Xu Y, Chen SL (2010) H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. Plant Cell Environ 33:943–958

    Article  CAS  PubMed  Google Scholar 

  • Szalai G, Janda T (2009) Effect of salt stress on the salicylic acid synthesis in young maize (Zea mays L.) Plants. J Agron Crop Sci 195:165–171

    Article  CAS  Google Scholar 

  • Tamogami S, Kodama O (2000) Coronatine elicits phytoalexin production in rice leaves (Oryza sativa L.) in the same manner as jasmonic acid. Phytochemistry 54:689–694

    Article  CAS  PubMed  Google Scholar 

  • Uppalapati SR, Ayoubi P, Weng H, Palmer DA, Mitchell RE, Jones W, Bender CL (2005) The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato. Plant J 42:201–217

    Article  CAS  PubMed  Google Scholar 

  • Velarde-Buendía AM, Shabala S, Cvikrova M, Oxana D, Pottosin I (2012) Salt-sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K+ efflux by polyamines. Plant Physiol Biochem 61:18–23

    Article  PubMed  Google Scholar 

  • Verma S, Mishra SN (2005) Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J Plant Physiol 162:669–677

    Article  CAS  PubMed  Google Scholar 

  • Wang BQ, Li ZH, Eneji AE, Tian XL, Zhai ZX, Li JM, Duan LS (2008) Effects of coronatine on growth, gas exchange traits, chlorophyll content, antioxidant enzymes and lipid peroxidation in maize (Zea mays L.) seedlings under simulated drought stress. Plant Prod Sci 11:282–290

    Article  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wasternack C, Xie D (2010) The genuine ligand of a jasmonic acid receptor: improved analysis of jasmonates is now required. Plant Signal Behav 5:337–340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu HL, Wu XL, Li ZH, Duan LS, Zhang MC (2012) Physiological evaluation of drought stress tolerance and recovery in cauliflower (Brassica oleraces L.) seedlings treated with methyl jasmonate and coronatine. J Plant Growth Regul 31:113–123

    Article  CAS  Google Scholar 

  • Xie ZX, Duan LS, Tian XL, Wang BM, Eneji AE, Li ZH (2008) Corontine alleviates salinity stress in cotton by improving the antioxidative defense system and radical-scavenging activity. J Plant Physiol 165:375–384

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Yin HX, Yang LL, Xie ZX, Liu XJ (2011) Differential salt tolerance in seedlings derived from dimorphic seeds of Atriplex centralasiatica: form physiology to molecular analysis. Planta 233:589–871

    Article  Google Scholar 

  • Yamasato A, Nagata N, Tanaka R, Tanaka A (2005) The N-terminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll b accumulation in Arabidopsis. Plant Cell 17:1585–1597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan JB, Zhang C, Gu M, Bai ZY, Zhang WG, Qi TC, Cheng ZW, Peng W, Luo HB, Nan FJ, Wang Z, Xie DX (2009) The Arabidopsis CORONATINE INSENSITIVE 1 protein is a jasmonate receptor. Plant Cell 21:2220–2236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan YH, Shu S, Li SH, He LZ, Li H, Du NS, Sun J (2014) Effect of exogenous putrescine on chlorophyll fluorescence imaging and heat dissipation capacity in cucumber (Cucumis sativus L.) under salt stress. J Plant Growth Regul 33:798–808

    Article  CAS  Google Scholar 

  • Zhang ZY, Yang FQ, Li B, Eneji AE, Li JM, Duan LS, Wang BM, Li ZH, Tian XL (2009) Coronatine-induced lateral-root formation in cotton (Gossypium hirsutum) seedlings under potassium-sufficient and deficient conditions in relation to auxin. J Plant Nutr Soil Sci 172:435–444

    Article  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Ann Rev Plant Biol 53:247–273

    Article  CAS  Google Scholar 

  • Zribi L, Fatma G, Fatma R, Salwa R, Hassan N, Nejib RM (2009) Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato Solanum lycopersicum (variety Rio Grande). Sci Hortic 120:367–372

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Carol L. Bender, Professor of Oklahoma State University, for kindly providing standard COR samples. Special acknowledgements are given to the editors and reviewers. This research was supported by the National Natural Science Foundation of China (No. 31101096), and National Key Technologies R&D Program of China (No. 2013BAD05B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Z., Duan, L., Li, Z. et al. Dose-Dependent Effects of Coronatine on Cotton Seedling Growth Under Salt Stress. J Plant Growth Regul 34, 651–664 (2015). https://doi.org/10.1007/s00344-015-9501-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-015-9501-1

Keywords

Navigation