Skip to main content
Log in

Inoculation with Azospirillum lipoferum or Azotobacter chroococcum Reinforces Maize Growth by Improving Physiological Activities Under Saline Conditions

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

A pot study was performed to examine the effect of plant growth-promoting rhizobacteria (PGPR) including Azospirillum lipoferum or Azotobacter chroococcum on growth criteria (leaf area and seedlings fresh and dry weight), pigments [chlorophylls (Chl a and b) and carotenoids], osmolytes (soluble sugars, soluble proteins and proline), nutrient uptake, antioxidant enzyme activities, and oxidative stress in maize plants under normal and salt-affected soils. The results showed that salt stress induced a reduction in growth traits, pigments, soluble proteins, K+, and K+/Na+ ratio. On the other side, it increased soluble sugars, proline, Na+, malondialdehyde (MDA), and the activity of peroxidase (POD) and catalase (CAT). Meanwhile, salt stress did not significantly change the activity of ascorbate peroxidase (APX) in maize plants. The inoculation using Azospirillum lipoferum or Azotobacter chroococcum significantly enhanced growth parameters, pigments, K+, osmolytes, K+/Na+ ratio, and the activity of CAT, POD, and APX of the salt-affected maize plants as well as uninoculated control plants. In addition, the results showed that both types of bacteria have attributed to lower MDA and Na+ in maize plants. Interestingly, Azospirillum lipoferum has affected more compared to Azotobacter chroococcum in control and salt-stressed plants. We, therefore, have observed in this study that microbial inoculation significantly improved plant physiological activities and that adding bacteria such as Azospiroillum or Azotobacter to the soil could mitigate the negative effects of salt stress on maize plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel Latef AA (2011) Ameliorative effect of calcium chloride on growth, antioxidant enzymes, protein patterns and some metabolic activities of canola (Brassica napus L.) under seawater stress. J Plant Nutr 34:1303–1320

    CAS  Google Scholar 

  • Abdel Latef AA, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127:228–233

    CAS  Google Scholar 

  • Abdel Latef AA, Chaoxing H (2014) Does the inoculation with Glomus mosseae improve salt tolerance in pepper plants? J Plant Growth Regul 33:644–653

    CAS  Google Scholar 

  • Abdel Latef AA, Tran L-SP (2016) Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Front Plant Sci 7:243

    PubMed  PubMed Central  Google Scholar 

  • Abdel Latef AA, Alhmad MF, Abdelfattah KE (2017a) The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in Lupine (Lupinus termis) plants. J Plant Growth Regul 36:60–70

    CAS  Google Scholar 

  • Abdel Latef AA, Alhmad MF, Hammad SA (2017b) Foliar application of fresh moringa leaf extract overcomes salt stress in fenugreek (Trigonellafoenum-graecum) plants. Egypt J Bot 57:157–179

    Google Scholar 

  • Abdel Latef AA, Srivastava AK, Saber H, Alwaleed EA, Tran L-SP (2017c) Sargassum muticum and Jania rubens regulate amino acid metabolism to improve growth and alleviate salinity in chickpea. Sci Rep 7:10537

    PubMed  PubMed Central  Google Scholar 

  • Abdel Latef AA, Kordrostam M, Zakir A, Zaki H, Saleh OM (2019a) Eustress with H2O2 facilitates plant growth by improving tolerance to salt stress in two wheat cultivars. Plants 8(9):303

    PubMed Central  Google Scholar 

  • Abdel Latef AA, Mostafa MG, Rahman MM, Abdel-Farid AB, Tran L-SP (2019b) Extracts from yeast and carrot roots enhance maize performance under seawater-induced salt stress by altering physio-biochemical characteristics of stressed plants. J Plant Growth Regul 38:966–979

    CAS  Google Scholar 

  • Abdel Latef AAH, Srivastava AK, El-sadek MSA, Kordrostami M, Tran LSP (2018) Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad Dev 29:1065–1073

    Google Scholar 

  • Abdel-Latef SA (2013) Evaluation of some medicinal and aromatic crops production using different agricultural techniques in reclaimed soils. MSc. Thesis, Fac Agric Sohag Univ. Egypt

  • Abdel-Latef SA, Hassanein A (2016) Growth, yield and seed quality of caraway under chemical, organic or biological production in new reclaimed soil of upper Egypt. J Hort Sci Ornamen Plants 8:66–73

    CAS  Google Scholar 

  • Abo-Baker AA (2003) Studies on mixed and single microbial inoculations of cultivated plants for improvement of growth and yield. Ph.D. Thesis, Fac Agric Assiut Univ. Egypt

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agron 7:18

    Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    CAS  PubMed  Google Scholar 

  • Ahammed GJ, Xu W, Liu A, Chen S (2019) Endogenous melatonin deficiency aggravates high temperature-induced oxidative stress in Solanum lycopersicum L. Environ Exp Bot 161:303–311

    CAS  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Google Scholar 

  • Ahmad P, Abdel Latef AA, Hashem A, AbdelAllah EF, Gucel S, Tran LSP (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347

    PubMed  PubMed Central  Google Scholar 

  • Ahmed A, Hasnain S (2014) Auxins as one of the factors of plant growth improvement by plant growth promoting rhizobacteria. Pol J Microbiol 63:261–266

    PubMed  Google Scholar 

  • Alam M, Juraimi AS, Rafii M, Abdul Hamid A (2015) Effect of salinity on biomass yield and physiological and stem-root anatomical characteristics of purslane (Portulaca oleracea L.) accessions. BioMed Res Int. https://doi.org/10.1155/2015/105695

    Article  PubMed  PubMed Central  Google Scholar 

  • Alamri SA, Mostafa YS (2009) Effect of nitrogen supply and Azospirillum brasilense Sp-248 on the response of wheat to seawater irrigation. Saudi J Biol Sci 16:101–107

    PubMed  PubMed Central  Google Scholar 

  • Alhia BMH (2010) The effect of Azotobacter chrococcum as nitrogen biofertilizer on the growth and yield of Cucumis Sativus. The Islamic University - Gaza, Gaza

    Google Scholar 

  • Arora M, Casas-Mulet R, Costelloe JF, Peterson TJ, McCluskey AH, Stewardson MJ (2017) Impacts of hydrological alterations on water quality. In: Avril CH, Webb JA, Michael JS, Brian R, Mike A (eds) Water for the environment. Elsevier, Amsterdam, pp 101–126

    Google Scholar 

  • Asghari R, Ahmadvand R (2018) Salinity stress and its impact on morpho-physiological characteristics of Aloe Vera. Pertanika J Trop Agric Sci 41:411–422

    Google Scholar 

  • Azooz MM, Shaddad MA, Abdel-Latef AA (2004) Leaf growth and K+/Na+ ratio as an indication of the salt tolerance of three sorghum cultivars grown under salinity stress and IAA treatment. Acta Agron Hung 52:287–296

    CAS  Google Scholar 

  • Bashan Y, De-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. In: Donald LS (ed) Advances in agronomy, vol 108. Elsevier, Amsterdam, pp 77–136

    Google Scholar 

  • Bates L, Waldren RP, Teare JD (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blaut M, Gottschalk G (1997) Energetics of aerobic and anaerobic bacteria. In: Gräber P, Milazzo G, Walz D (eds) Bioenergetics. Springer, Berlin, pp 139–211

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Cassán F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33:440–459

    Google Scholar 

  • Chen G-X, Asada K (1992) Inactivation of ascorbate peroxidase by thiols requires hydrogen peroxide. Plant Cell Physiol 33:117–123

    CAS  Google Scholar 

  • Chrysargyris A, Michailidi E, Tzortzakis N (2018) Physiological and biochemical responses of Lavandula angustifolia to salinity under mineral foliar application. Front Plant Sci 9:489

    PubMed  PubMed Central  Google Scholar 

  • Cohen A, Travaglia C, Reinoso H, Piccoli P, Bottini R (2001) Azospirillum inoculation and inhibition of gibberellin and ABA synthesis in maize seedling under drought. In: The proceedings of the plant Growth Regulation Society of America, pp 88–93

  • Cohen AC, Bottini R, Piccoli PN (2008) Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regul 54:97–103

    CAS  Google Scholar 

  • D’Amelia L, Dell’Aversana E, Woodrow P, Ciarmiello LF, Carillo P (2018) Metabolomics for crop improvement against salinity stress. In: Kumar V, Wani S, Suprasanna P, Tran LS (eds) Salinity responses and tolerance in plants, vol 2. Springer, Cham, pp 267–287

    Google Scholar 

  • Dadkhah A (2011) Effect of salinity on growth and leaf photosynthesis of two sugar beet (Beta vulgaris L.) cultivars. J Agric Sci Technol 13:1001–1012

    CAS  Google Scholar 

  • Deinlein U, Stephan A, Horie T, Luo W, Xu G, Schroeder J (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dresselhaus T, Hückelhoven R (2018) Biotic and abiotic stress responses in crop plants. Multidisciplinary Digital Publishing Institute, Basel

    Google Scholar 

  • Egamberdieva D, Lugtenberg B (2014) Use of plant growth-promoting rhizobacteria to alleviate salinity stress in plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 73–96

    Google Scholar 

  • El-Esawi MA, Al-Ghamdi AA, Ali HM, Alayafi AA (2019) Azospirillum lipoferum FK1 confers improved salt tolerance in chickpea (Cicer arietinum L.) by modulating osmolytes, antioxidant machinery and stress-related genes expression. Environ Exp Bot 159:55–65

    CAS  Google Scholar 

  • Enebe MC, Babalola OO (2018) The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Appl Microbiol Biotechnol 102:7821–7835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ezeonu CS, Tagbo R, Anike EN, Oje OA, Onwurah IN (2012) Biotechnological tools for environmental sustainability: prospects and challenges for environments in Nigeria—a standard review. Biotechnol Res Int. https://doi.org/10.1155/2012/450802

    Article  PubMed  PubMed Central  Google Scholar 

  • Fasciglione G, Casanovas EM, Quillehauquy V, Yommi AK, Goñi MG, Roura SI, Barassi CA (2015) Azospirillum inoculation effects on growth, product quality and storage life of lettuce plants grown under salt stress. Sci Hortic 195:154–162

    CAS  Google Scholar 

  • Fendrihan S, Constantinescu F, Sicuia O, Dinu S (2017) Azospirillum strains as biofertilizers and biocontrol agents—a practical review. J Adv Agric 7:1096–1108

    Google Scholar 

  • Fukami J, Cerezini P, Hungria M (2018) Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express 8:73

    PubMed  PubMed Central  Google Scholar 

  • Gharsallah C, Fakhfakh H, Grubb D, Gorsane F (2016) Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants. https://doi.org/10.1093/aobpla/plw055/2609615

    Article  PubMed  PubMed Central  Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin H-S, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    PubMed  Google Scholar 

  • Green S, Salkind N (2016) Using SPSS for windows and macintosh Books a la Carte. Pearson, London

    Google Scholar 

  • Gupta SK, Goyal MR, Singh A (2018) Engineering practices for management of soil salinity: agricultural, physiological, and adaptive approaches. CRC Press, Boca Raton

    Google Scholar 

  • Hamdia M, El-Komy H (1997) Effect of salinity, gibberellic acid and Azospirillum inoculation on growth and nitrogen uptake of Zea mays. Biol Plant 40:109–120

    CAS  Google Scholar 

  • Hamdia MAE-S, Shaddad M, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44:165–174

    CAS  Google Scholar 

  • Hammer Ø, Harper DA, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Hasan MK, Ahammed GJ, Sun S, Li M, Yin H, Zhou J (2019) Melatonin inhibits cadmium translocation and enhances plant tolerance by regulating sulfur uptake and assimilation in Solanum lycopersicum L. J Agric Food Chem 67:10563–10576

    CAS  PubMed  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Google Scholar 

  • Huang Z, Zhao L, Chen D, Liang M, Liu Z, Shao H, Long X (2013) Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets. PLoS ONE 8:e62085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Irigoyen J, Einerich D, Sanche-Diaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol. Plant 84:55–60

    CAS  Google Scholar 

  • Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front Plant Sci 8:1617

    PubMed  PubMed Central  Google Scholar 

  • Jha CK, Saraf M (2015) Plant growth promoting rhizobacteria (PGPR): a review. J Agric Res Dev 5:108–119

    Google Scholar 

  • Kaymak HC (2010) Potential of PGPR in agricultural innovations. In: Maheshwari D (ed) Plant growth and health promoting bacteria. Springer, Berlin, pp 45–79

    Google Scholar 

  • Khalid M, Bilal M, Hassani D, Iqbal HM, Wang H, Huang D (2017) Mitigation of salt stress in white clover (Trifolium repens) by Azospirillum brasilense and its inoculation effect. Bot Stud 58:5

    PubMed  PubMed Central  Google Scholar 

  • Kordrostami M, Rabiei B, Kumleh H (2016) Association analysis, genetic diversity and haplotyping of rice plants under salt stress using SSR markers linked to SalTol and morpho-physiological characteristics. Plant Syst Evol 302:871–890

    CAS  Google Scholar 

  • Kordrostami M, Rabiei B, Kumleh H (2017a) Biochemical, physiological and molecular evaluation of rice cultivars differing in salt tolerance at the seedling stage. Physiol Mol Biol Plants 23:529–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kordrostami M, Rabiei B, Kumleh H (2017b) Different physiobiochemical and transcriptomic reactions of rice (Oryza sativa L.) cultivars differing in terms of salt sensitivity under salinity stress. Environ Sci Pollut Res 24:7184–7196

    CAS  Google Scholar 

  • Kosová K, Prášil IT, Vítámvás P (2013) Protein contribution to plant salinity response and tolerance acquisition. Int J Mol Sci 14:6757–6789

    PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler H, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Portland Press Limited, London

    Google Scholar 

  • Machado R, Serralheiro R (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3:30

    Google Scholar 

  • Maehly AC, Chance B (1954) The assay of catalase and peroxidase. In: Glick D (ed) Methods in biochemistry analysis, vol 1. Interscience Publishers, New York, pp 357–425

    Google Scholar 

  • Masahi S, Naderi D, Baharlouei J (2018) Effect of biofertilizers on growth and biochemical characteristics of tall fescue (Festuca arundinacea Schreb.) under different levels of salinity. J Agric Sci Sust Prod 28:79–95

    Google Scholar 

  • Mathivanan S, Chidambaram AA, Robert GA, Kalaikandhan R (2017) Impact of PGPR inoculation on photosynthetic pigment and protein contents in Arachis hypogaea L. J Agric Sci 1:29–36

    Google Scholar 

  • Mazhar R, Ilyas N, Saeed M, Bibi F, Batool N (2016) Biocontrol and salinity tolerance potential of Azospirillum lipoferum and its inoculation effect in wheat crop. Int J Agric Biol. https://doi.org/10.17957/IJAB/15.0115

    Article  Google Scholar 

  • Moslemi Z, Habibi D, Asgharzadeh A, Ardakani MR, Mohammadi A, Sakari A (2011) Effects of super absorbent polymer and plant growth promoting rhizobacteria on yield and yield components of maize under drought stress and normal conditions. Afr J Agric Res 6:4471–4476

    Google Scholar 

  • Nag NK (2015) Selection of stress tolerant effective Azotobacter isolates for climatic conditions of Chhattisgarh. Indira Gandhi Krishi Vishwavidyalaya, Raipur

    Google Scholar 

  • Öztürk M, Waisel Y, Khan MA, Görk G (2006) Biosaline agriculture and salinity tolerance in plants. Springer, Berlin

    Google Scholar 

  • Pan J, Peng F, Xue X, You Q, Zhang W, Wang T, Huang C (2019) The growth promotion of two salt-tolerant plant groups with PGPR inoculation: a meta-analysis. Sustainability 11:378

    CAS  Google Scholar 

  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34:737–752

    Google Scholar 

  • Puvanitha S, Mahendran S (2017) Effect of salinity on plant height, shoot and root dry weight of selected rice cultivars. Sch J Agric Vet Sci 4:126–131

    Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    CAS  Google Scholar 

  • Rios-Gonzalez K, Erdei L, Lips SH (2002) The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources. Plant Sci 162:923–930

    CAS  Google Scholar 

  • Riva-Roveda L, Perilleux C (2015) Effects of cold temperatures on the early stages of maize (Zea mays L.) a review. Biotechnol Agron Soc 19:42–52

    CAS  Google Scholar 

  • Saraf R, Saingar S, Chaudhary S, Chakraborty D (2018) Response of plants to salinity stress and the role of salicylic acid in modulating tolerance mechanisms: physiological and proteomic Approach. In: Vats S (ed) Biotic and abiotic stress tolerance in plants. Springer, Singapore, pp 103–136

    Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    CAS  PubMed  Google Scholar 

  • Silva-Ortega CO, Ochoa-Alfaro AE, Reyes-Agüero JA, Aguado-Santacruz GA, Jiménez-Bremont JF (2008) Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Plant Physiol Biochem 46:82–92

    CAS  PubMed  Google Scholar 

  • Singh S, Singh R, Kumar K, Singh B, Shukla L (2013) Biofertilizers and green manuring for sustainable agriculture Modern technologies for sustainable agriculture, 1st edn. New India Publishing Agency, New Delhi, pp 129–150

    Google Scholar 

  • StatGraphics C (2014) StatGraphics Centurion XVII. User Manual Version 17

  • Strzałka K, Kostecka-Gugała A, Latowski D (2003) Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. Russ J Plant Physiol 50:168–173

    Google Scholar 

  • Tahir M, Ahmad I, Shahid M, Shah GM, Farooq ABU, Akram M et al (2019) Regulation of antioxidant production, ion uptake and productivity in potato (Solanum tuberosum L.) plant inoculated with growth promoting salt tolerant Bacillus strains. Ecotox Environ Safe 178:33–42

    CAS  Google Scholar 

  • Tavakkoli E, Rengasamy P, McDonald GK (2010) High concentrations of Na+ and Cl ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61:4449–4459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21:573

    PubMed Central  Google Scholar 

  • Verma JP, Yadav J, Tiwari K, Lavakush SV (2010) Impact of plant growth promoting rhizobacteria on crop production. Int JAgric Res 5:954–983

    Google Scholar 

  • Williams V, Twine S (1960) Flame photometric method for sodium, potassium and calcium, vol 5. Modern methods of plant analysis, Springer International, Berlin

    Google Scholar 

  • Yadav O et al (2015) Genetic improvement of maize in India: retrospect and prospects. Agric Res 4:325–338

    CAS  Google Scholar 

  • Yang X, Fang S (2015) Practices, perceptions, and implications of fertilizer use in East-Central China. Ambio 44:647–652

    PubMed  PubMed Central  Google Scholar 

  • Zarea M, Hajinia S, Karimi N, Goltapeh EM, Rejali F, Varma A (2012) Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biol Biochem 45:139–146

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arafat Abdel Hamed Abdel Latef, Mojtaba Kordrostami or Ali Zakir.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel Latef, A.A.H., Abu Alhmad, M.F., Kordrostami, M. et al. Inoculation with Azospirillum lipoferum or Azotobacter chroococcum Reinforces Maize Growth by Improving Physiological Activities Under Saline Conditions. J Plant Growth Regul 39, 1293–1306 (2020). https://doi.org/10.1007/s00344-020-10065-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-020-10065-9

Keywords

Navigation