Skip to main content

Advertisement

Log in

Integrated Approaches to Develop Drought-Tolerant Rice: Demand of Era for Global Food Security

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Rice (Oryza sativa L.) is an important food crop that belongs to family Gramineae and needs a larger amount of water to complete its life cycle as compared to other crops. Hence, rice production is severely affected by water stress. Drought is an important issue in rainfed areas across the globe which limits rice production. Several morphological characters like germination, plant height, plant biomass, number of tillers, various root and leaf traits, physiological characters like photosynthesis, stomatal conductance, transpiration, water use efficiency, relative water content, chlorophyll content, photosystem-II activity, carbon isotope discrimination, membrane stability, and abscisic acid content of rice are reduced under drought conditions. Drought also induces the accumulation of several biochemical osmoprotectants like proline, polyamines, sugars, antioxidants and alters the expression of several genes including transcription factors and defense-related proteins, hence thereby affects the yield of rice crop. Drought escape, drought avoidance, and drought tolerance are the mechanisms that prevent plant from harmful effects of drought. Thus, this review is focused mainly on recent information about the morphological, physio-biochemical, and molecular effects, responses, and adaptation mechanisms of rice under drought stress. Here we also discussed that how we can improve the rice for drought tolerance using various molecular tools and techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akiyama T, Pillai MA (2001) Molecular cloning, characterization and in vitro expression of a novel endo-1,3-beta-glucanase up-regulated by ABA and drought stress in rice (Oryza sativa L.). Plant Sci 161:1089–1098

    Article  CAS  Google Scholar 

  • Ali ML, Pathan MS, Zhang J, Bai G, Sarkarung S, Nguyen HT (2000) Mapping QTLs for root traits in a recombinant inbred population from two indica ecotypes in rice. Theor Appl Genet 101:756–766

    Article  CAS  Google Scholar 

  • Allen DJ, Ort D (2001) Impact of chilling temperatures on photosynthesis in warm climate plants. Trends Plant Sci 6:36–42

    Article  CAS  Google Scholar 

  • Andres-Colas N, Carrió-Seguí A, Abdel-Ghany SE, Pilon M, Peñarrubia L (2018) Expression of the intracellular COPT3-mediated Cu transport is temporally regulated by the TCP16 transcription factor. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00910

    Article  Google Scholar 

  • Andrew JS, Moreau H, Kuntz M, Pagny G, Lin C, Tanksley S, McCarthy J (2008) An investigation of carotenoid biosynthesis in Coffea canephora and Coffea arabica. J Plant Physiol 165:1087–1106

    Article  Google Scholar 

  • Ashok K, Kumar SM, Sudha M, Vijayalakshmi D, Vellaikumar S, Senthil N, Raveendran M (2013) Identification of genes controlling ABA accumulation in rice during drought stress and seed maturation. Int J Adv Biotechnol Res 4(4):481–487

    Google Scholar 

  • Atlin GN, Lafitte HR, Tao D, Laza M, Amante M, Courtois B (2006) Developing rice cultivars for high-fertility upland systems in the Asian tropics. Field Crops Res 97:43–52

    Article  Google Scholar 

  • Babu RC, Shashidhar HE, Lilley JM, Thanh ND, Ray JD, Sadasivam S, Sarkarung S, O’Toole JC, Nguyen HT (2001) Variation in root penetration ability, osmotic adjustment and dehydration tolerance among accessions of rice adapted to rainfed lowland and upland ecosystems. Plant Breed 120:233–238

    Article  Google Scholar 

  • Babu RC, Zhang J, Blum A, Ho TH, Wu R, Nguyen HT (2004a) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862

    Article  CAS  Google Scholar 

  • Bae H, Kim SK, Cho SK, Kang BG, Kim WT (2011) Overexpression of OsRDCP1, a rice RING domain-containing E3 ubiquitin ligase, increased tolerance to drought stress in rice (Oryza sativa L.). Plant Sci 180:775–782

    Article  CAS  Google Scholar 

  • Baisakh N, Yabes J, Gutierrez A, Mangu V, Peiyong Ma, Famoso A, Pereira A (2020) Genetic mapping identifies consistent quantitative trait loci for yield traits of rice under greenhouse drought conditions. Genes 11:62. https://doi.org/10.3390/genes11010062

    Article  CAS  Google Scholar 

  • Baldrich P, Campo S, Wu MT, Liu TT, Hsing YIC, Segundo BS (2015) MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors. RNA Biol 12:847–863

    Article  Google Scholar 

  • Banayo NP, Rahon RE, Cruz PS, Kato Y (2021) Fertilizer responsiveness of high-yielding drought-tolerant rice in rainfed lowlands. Plant Prod Sci 24(3):279–286

    Article  CAS  Google Scholar 

  • Banayo NP, Rahon RE, Cruz PS, Kato Y (2021) Fertilizer responsiveness of high-yielding drought-tolerant rice in rainfed lowlands. Plant Prod Sci 24(3):279–286

    Article  CAS  Google Scholar 

  • Basu S, Roychoudhury A, Saha PP, Sengupta DN (2010) Comparative analysis of some biochemical responses of three indica rice varieties during polyethylene glycol-mediated water stress exhibits distinct varietal differences. Acta Physiol Plant 32(3):551–563

    Article  CAS  Google Scholar 

  • Basu S, Ramegowda V, Kumar A, Pereira A (2016) Plant adaptation to drought stress. F1000 Res 5:1554

    Article  Google Scholar 

  • Beck EH, Fettig S, Knake C, Hartig K, Bhattarai T (2007) Specific and unspecific responses of plants to cold and drought stress. J Biosci 32:501–510

    Article  CAS  Google Scholar 

  • Bernier J, Kumar A, Venuprasad R, Spaner D, Atlin GN (2007) A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci 47:507–516

    Article  Google Scholar 

  • Bihani P, Char B, Bhargava S (2011) Transgenic expression ofsorghum DREB2 in rice improves tolerance and yield under water limitation. J Agric Sci 149(1):95–101

    Article  CAS  Google Scholar 

  • Blum A, Shpiler L, Golan G, Mayer J (1989) Yield stability and canopy temperature of wheat genotypes under drought stress. Field Crop Res 22:28996

    Article  Google Scholar 

  • Bors W, Langebartels C, Michel C, Sandermann JH (1989) Polyamine as radical scavengers and protectants against ozone damage. Phytochemistry 28:1589–1595

    Article  CAS  Google Scholar 

  • Bota J, Flexas J, Medrano H (2004) Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol 162:671–681

    Article  CAS  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Tanguy M (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    Article  CAS  Google Scholar 

  • Bouman BAM, Peng S, Castaneda AR, Visperas RM (2005) Yield and water use of irrigated tropical aerobic rice systems. Agric Water Manag 74:87–105

    Article  Google Scholar 

  • Boyer JS (1996) Advances in drought tolerance in plants. Adv Agron 56:187–218

    Article  Google Scholar 

  • Bradford KJ (1986) Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. Hort Sci 21:1105–1112

    Google Scholar 

  • Brestic M, Zivcak M (2013) PS II Fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications. Molecular stress physiology of plants. Springer, New Delhi, pp 87–131

    Chapter  Google Scholar 

  • Bunnag S, Pongthai P (2013) Selection of rice (Oryza sativa L.) cultivars tolerant to drought stress at the vegetative stage under field conditions. Am J Plant Sci 4(9):1701–1708

    Article  Google Scholar 

  • Buresh RJ, Castillo RL, Dela Torre JC, Laureles EV, Samson MI, Sinohin PJ, Guerra M (2019) Site-specific nutrient management for rice in the Philippines: calculation of field-specific fertilizer requirements by Rice Crop Manager. Field Crop Res 239:56–70

    Article  Google Scholar 

  • Calzadilla PI, Gazquez A, Maiale SJ, Rodriguez AA, Ruiz OA, Bernardina MA (2014) Polyamines as indicators and modulators of the abiotic stress in plants. In: Anjum NA, Gill SS, Gill R (eds) Plant adaptation to environmental change: significance of amino acids and their derivatives. CABI, Wallingford, pp 109–128

    Chapter  Google Scholar 

  • Capell T, Escobar C, Liu H, Burtin D, Lepri O, Christou P (1998) Over-expression of the oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants. Theor Appl Genet 97:246–254

    Article  CAS  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA 101(26):9909–9914

    Article  CAS  Google Scholar 

  • Carrijo DR, Lundy ME, Linquist BA (2017) Rice yields and water use under alternate wetting and drying irrigation: a meta-analysis. Field Crop Res 203:173–180

    Article  Google Scholar 

  • Cheah BH, Nadarajah K, Divate MD, Wickneswari R (2015) Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage. BMC Genom 16:692

    Article  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance to abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  CAS  Google Scholar 

  • Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP (2008) Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30:2191–2198. https://doi.org/10.1007/s10529-008-9811-5

    Article  CAS  Google Scholar 

  • Chutia J, Borah SP, Tanti B (2012) Effect of drought stress on protein and proline metabolism in seven traditional rice (Oryza sativa L.) genotypes of Assam, India. J Res Biol 2(3):206–214

    Google Scholar 

  • Clauw P, Coppens F, De Beuf K, Dhondt S, Van Daele T, Maleux K, Inze D (2015) Leaf responses to mild drought stress in natural variants of Arabidopsis thaliana. Plant Physiol 167(3):800–816

    Article  CAS  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonality in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2002) Improving intrinsic water use efficiency and crop yield. Crop Sci 42:122–131

    Google Scholar 

  • Cornic G, Massacci A (1996) Leaf photosynthesis under drought stress. In: Baker NR (ed) Photosynthesis and the environment. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Cruz RT, O’Toole JC (1984) Dry land rice to an irrigation gradient at flowering stage. Agron J 76:178–183

    Article  Google Scholar 

  • Cui M, Zhang WJ, Zhang Q, Xu ZQ, Zhu ZG, Duan FP, Wu R (2011) Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiol Biochem 49(12):1384–1391

    Article  CAS  Google Scholar 

  • Cui LG, Shan JX, Shi M, Gao JP, Lin HX (2014) The miR156-SPL 9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J 80:1108–1117

    Article  CAS  Google Scholar 

  • Cui Y, Zhang W, Lin X, Xu S, Xu J, Li Z (2018) Simultaneous improvement and genetic dissection of drought tolerance using selected breeding populations of rice. Front Plant Sci 9:320

    Article  Google Scholar 

  • Cutler JM, Steponkus PL, Wach MJ, Shahan KW (1980) Dynamic aspects and enhancement of leaf elongation in rice. Plant Physiol 66:147–152

    Article  CAS  Google Scholar 

  • Daryanto S, Wang L, Jacinthe PA (2017) Global synthesis of drought effects on cereal, legume, tuber and root crops production: a review. Agric Watermanag 179:18–33

    Google Scholar 

  • Datta K, Baisakh N, Ganguly M, Krishnan S, Shinozaki KY, Datta SK (2012) Overexpression of Arabidopsis and rice stress genes inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotechnol J 10(5):579–586

    Article  CAS  Google Scholar 

  • de Datta SK, Malabuyoc JA, Aragon EL (1988) A field screening technique for evaluating rice germplasm for drought tolerance during the vegetative stage. F Crop Res 19:123–134

    Article  Google Scholar 

  • Delphine F, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61(12):3211–3222

    Article  Google Scholar 

  • Deus KE, Lanna AC, Abreu FRM, Silveira RDD, Pereira WJ, Brondani C, Vianello RP (2015) Molecular and biochemical characterization of superoxide dismutase (SOD) in upland rice under drought. Aust J Crop Sci 9(8):744–753

    Google Scholar 

  • Ding Y, Tao Y, Zhu C (2013) Emerging roles of microRNAs in the mediation of drought stress response in plants. J Exp Bot 64:3077–3086

    Article  CAS  Google Scholar 

  • Dixit S, Swamy BPM, Vikram P, Ahmed HU, Sta Cruz MT, Amante M, Atri D, Leung H, Kumar A (2012) Fine mapping of QTLs for rice grain yield under drought reveals sub-QTLs conferring a response to variable drought severities. Theor Appl Genet 125:155–169

    Article  Google Scholar 

  • Dixit S, Singh A, Cruz MTS, Maturan PT, Amante M, Kumar A (2014a) Multiple major QTL lead to stable yield performance of rice cultivars across varying drought intensities. BMC Genet 15:16

    Article  Google Scholar 

  • Dixit S, Singh A, Kumar A (2014) Rice breeding for high grain yield under drought: a strategic solution to a complex problem. Int J Agron 2014:1–15

    Article  Google Scholar 

  • Do PT, Degenkolbe T, Erban A, Heyer AG, Kopka J, Kohl KL, Hincha DK, Zuther E (2013) Dissecting rice polyamine metabolism under controlled long-term drought stress. PLoS One 8(4):e60325

    Article  CAS  Google Scholar 

  • Dobermann A, Witt C, Dawe D, Gines GC, Nagarajan R, Satawathananont S, Satawathananont S, Son TT, Tan PS, Wang GH, Chien NV, Thoa VTK, Phung CV, Stalin P, Muthukrishnan P, Ravi V, Babu M, Chatuporn S, Sookthongsa J, Fu R et al (2002) Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crop Res 74(1):37–66. https://doi.org/10.1016/S0378-4290(01)00197-6

    Article  Google Scholar 

  • Du H, Wang N, Cui F, Li X, Xiao J, Xiong L (2010) Characterization of carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and ABA synthesis in rice. Plant Physiol 154:1304–1318

    Article  CAS  Google Scholar 

  • Du J, Shen T, Xiong Q et al (2020a) Combined proteomics, metabolomics and physiological analyses of rice growth and grain yield with heavy nitrogen application before and after drought. BMC Plant Biol 20:556. https://doi.org/10.1186/s12870-020-02772-y

    Article  CAS  Google Scholar 

  • Duan J, Cai W (2012) OsLEA3–2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS ONE 7:e45117

    Article  CAS  Google Scholar 

  • Ekanayake IJ, Steponkus PL, DeDatta SK (1989) Spikelet sterility and flowering response of rice to water stress at anthesis. Ann Bot 63:257–264

    Article  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147

    Article  Google Scholar 

  • Fahramand M, MahmoodyM KA, Noori M, Rigi K (2014) Influence of abiotic stress on proline, photosynthetic enzymes and growth. Int Res J Appl Basic Sci 8(3):257–265

    Google Scholar 

  • Faize M, Burgos L, FaizeL PA, Nicolas E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62:2599–2613

    Article  CAS  Google Scholar 

  • Fang Y, Xie K, Xiong L (2014a) Conserved miR164-targeted NAC genes negatively regulate drought resistance inrice. J Exp Bot 65:2119–2135

    Article  CAS  Google Scholar 

  • Fang Y, Xie K, Xiong L (2014b) Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. J Exp Bot 65:2119–2135

    Article  CAS  Google Scholar 

  • Farooq M, Basra SMA, Khalid M, Tabassum R, Mehmood T (2006) Nutrient homeostasis, reserves metabolism and seedling vigor as affected by seed priming in coarse rice. Can J Bot 84:1196–1202

    Article  CAS  Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Cheema ZA, Cheema MA, Khaliq A (2008) Physiological role of exogenously applied glycine betaine in improving drought tolerance of fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 194:325–333

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009a) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Farooq M, Wahid A, Lee D, Ito O, Siddique KHM (2009b) Advances in drought resistance of rice. Crit Rev Plant Sci 28(4):199–217

    Article  CAS  Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Ahmad N, Saleem BA (2009) Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. J Agron Crop Sci 195(4):237–246

    Article  CAS  Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Khaliq A, Kobayashi N (2009) Rice seed invigoration. In: Lichtfouse E (ed) Sustainable agriculture reviews. Springer, Dordrecht

    Google Scholar 

  • Farooq M, Kobayashi N, Wahid A, Ito O, Basra SMA (2009e) Strategies to produce more rice with less water. Adv Agron 10:351–387

    Google Scholar 

  • Fleury D, Jeferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61:3211–3222

    Article  CAS  Google Scholar 

  • Fontes F, Gorst A, Palmer C (2020) Does choice of drought index influence estimates of drought-induced rice losses in India? Environ Dev Econ 25(5):459–481

    Article  Google Scholar 

  • Gao T, Wu Y, Zhang Y, Liu L, Ning Y, Wang D, Xie Q (2011) OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice. Plant Mol Biol 76:145–156

    Article  CAS  Google Scholar 

  • Garrity DP, O’Toole JC (1994) Screening rice for drought resistance at the reproductive phase. Field Crops Res 39:99–110

    Article  Google Scholar 

  • Gebert LF, MacRae IJ (2018) Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 20:21–37

    Article  Google Scholar 

  • Ghimire KH (2012) Identification and mapping of QTL (qDTY1.1) with a consistent effect on GY under RS. Field Crops Res 131:88–96

    Article  Google Scholar 

  • Grewal RK, Saraf S, Deb A, Kundu S (2018) Differentially expressed microRNAs link cellular physiology tophenotypic changes in rice under stress conditions. Plant Cell Physiol 59:2143–2154

    Article  CAS  Google Scholar 

  • Guan YS, Serraj R, Liu SH, Xu JL, Ali J, Wang WS, Venus E, Zhu LH, Li ZK (2010) Simultaneously improving yield under drought stress and non-stress conditions: a case study of rice (Oryza sativa L.). J Exp Bot 61:4145–4156

    Article  CAS  Google Scholar 

  • Guerrero F, Mullet JE (1986) Increased abscisic acid biosynthesis during plant dehydration requires transcription. Plant Physiol 80:588–591

    Article  CAS  Google Scholar 

  • Guidi L, Piccolo E, Landi M (2019) Chlorophyll fluorescence, photoinhibition and abiotic stress: does it make any difference the fact to be a C3 or C4 species. Frontiers 10(174):1–11

    Google Scholar 

  • Guimarães CM, Stone LF, Silva ACDL (2016) Evapotranspiration and grain yield of upland rice as affected by water deficit. Rev Bras Eng Agríc Ambient 20:441–446

    Article  Google Scholar 

  • Haefele SM, Kato Y, Singh S (2016) Climate ready rice: Augmenting drought tolerance with best management practices. Field Crop Res 190:60–69

    Article  Google Scholar 

  • Harris D, Tripathi RS, Joshi A (2002) On-farm seed priming to improve crop establishment and yield in dry direct-seeded rice. Direct seeding: research strategies and opportunities. International Research Institute, Manila, pp 231–240

    Google Scholar 

  • Hasanuzzaman M, Alam MM, Rahman A, Hasanuzzaman M, Nahar K, Fujita M (2014) Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. Biomed Res Int 2014:1–17

    Google Scholar 

  • Havaux M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 3:147–151

    Article  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466

    Article  CAS  Google Scholar 

  • Hemamalini GS, Shashidhar HE, Hittalmani S (2000) Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.). Euphytica 112:69–78

    Article  CAS  Google Scholar 

  • Henson IE (1985) Modification of leaf size in rice (Oryza sativa L.) and its effects on water stress-induced abscisic acid accumulation. Ann Bot 56:481–487

    Article  CAS  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  CAS  Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol 24:519–570

    Article  CAS  Google Scholar 

  • Hsiao TC, O’Toole JC, Yambao EB, Turner NC (1984) Influence of osmotic adjustment on leaf rolling and tissue death in rice (Oryza sativa L.). Plant Physiol 75:338–341

    Article  CAS  Google Scholar 

  • Hu H, Xiong L (2014) Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65:715–741

    Article  CAS  Google Scholar 

  • Hu J, Jiang D, Cao W, Luo W (2004) Effect of short-term drought on leaf water potential, photosynthesis and dry matter partitioning in paddy rice. Chin J App Ecol 15:63–67

    Google Scholar 

  • Hu J, Zeng T, Xia Q, Qian Q, Yang C, Ding Y, Chen L, Wang W (2018) Unravelling miRNA regulation in yield of rice (Oryza sativa) based on differential network model. Sci Rep 8:8498

    Article  Google Scholar 

  • Huang L, Zhang F, Wang W, Zhou Y, Fu B, Li Z (2014) Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress. BMC Genom 15(1):1–6

    Article  Google Scholar 

  • Huang J, Si W, Deng Q, Li P, Yang S (2014b) Rapid evolution of avirulence genes in rice blast fungus Magnaportheoryzae. BMC Genet 15:45

    Article  Google Scholar 

  • Hussain M, Malik MA, Farooq M, Ashraf MY, Cheema MA (2008) Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J Agron Crop Sci 194:193–199

    Article  CAS  Google Scholar 

  • Hussain Z, Ali S, Hayat Z, Zia MA, Iqbal A, Ali GM (2014) Agrobacterium mediated transformation of DREB1A gene for improved drought tolerance in rice cultivars (Oryza sativa L.). Aust J Crop Sci 8(7):1114–1123

    Google Scholar 

  • Inthapan P, Fukai S (1988) Growth and yield of rice cultivars under sprinkler irrigation in south-eastern Queensland. 2. Comparison with maize and grain sorghum under wet and dry conditions. Aust J Exp Agric 28:243–248

    Article  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47(1):141–153

    Article  CAS  Google Scholar 

  • Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524

    Article  CAS  Google Scholar 

  • Jedmowski C, Bruggemann W (2015) Imaging of fast chlorophyll fluorescence induction curve (OJIP) parameters, applied in a screening study with wild barley (Hordeum spontaneum) genotypes under heat stress. J Photochem Photobiol, B 151:153–160

    Article  CAS  Google Scholar 

  • Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi Y, Kim M, Reuzeau C, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197

    Article  CAS  Google Scholar 

  • Jian-Chang Y, Liu K, Zhang SF, Wang XM, Wang ZQ, Liu LJ (2008) Hormones in rice spikelets in responses to water stress during meiosis. Acta Agron Sin 34:111–118

    Article  Google Scholar 

  • Jongdee B, Pantuwan G, Fukai S, Fischer K (2006) Improving drought tolerance in rainfed lowland rice: an example from Thailand. Agric Water Manag 80:225–240

    Article  Google Scholar 

  • Kamarudin ZS, Yusop MR, Tengku M, Mohamed M, Ismail MR, Harun AR (2018) Growth performance and antioxidant enzyme activities of advanced mutant rice genotypes under drought stress condition. Agronomy 8(279):1–15

    Google Scholar 

  • Kaminaka H, Morita S, Nakajima M, Masumura T, Tanaka K (1998) Gene cloning and expression of cytosolic glutathione reductase in rice (Oryza sativa L.). Plant Cell Physiol 39:1269–1280

    Article  CAS  Google Scholar 

  • Kanneganti V, Gupta AK (2008) Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol 66:445–462

    Article  CAS  Google Scholar 

  • Kato Y, Abe J, Kamoshita A, Yamagishi J (2006) Genotypic variation in root growth angle in rice (Oryza sativa L.) and its association with deep root development in upland fields with different water regimes. Plant Soil 287:117–129

    Article  CAS  Google Scholar 

  • Kaya MD, Okçub G, Ataka M, Cikilic KO (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24:291–295

    Article  CAS  Google Scholar 

  • Kemble AR, Macpherson HT (1954) Liberation of amino acids in perennial rye grass during wilting. Biochem J 58(1):46–49

    Article  CAS  Google Scholar 

  • Khan F, Upreti P, Singh R, Shukla PK, Shirke PA (2017) Physiological performance of two contrasting rice varieties under water stress. Physiol Mol Biol Plants 23(1):85–97

    Article  CAS  Google Scholar 

  • Khowaja FS, Price AH (2008) QTL mapping rolling, stomata conductance and dimension traits of excised leaves in the Bala-Azucena recombinant inbred population of rice. Field Crop Res 106:248–257

    Article  Google Scholar 

  • Khush GS (1996) Prospects and approaches to increasing the genetic yield potential of rice. In: Evenson RE, Herdt RW, Hossain M (eds) Rice research in Asia: progress and priorities. CABI/IRRI, Manila

    Google Scholar 

  • Kiani SP, Maury P, Sarrafi A, Grieu P (2008) QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant Sci 175:565–573

    Article  Google Scholar 

  • Kim YS, Kim JK (2009) Rice transcription factor AP37 involved in grain yield increase under drought stress. Plant Signal Behav 4(8):735–736

    Article  CAS  Google Scholar 

  • Kim W, Iizumi T, Nishimori M (2019) Global patterns of crop production losses associated with droughts from 1983 to 2009. J Appl Meteorol Climatol 58:1233–1244

    Article  Google Scholar 

  • Kondo M, Pablico PP, Aragones DV, Agbisit R, Abe J, Morita S (2003) Genotypic and environmental variations in root morphology in rice genotypes under upland field conditions. Plant Soil 255:189–200

    Article  CAS  Google Scholar 

  • Kong Z, Li M, Yang W, Xu W, Xue Y (2006) A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol 141:1376–1388

    Article  CAS  Google Scholar 

  • Kramer PJ (1969) Plant and soil water relationship. TATA McGraw-Hill, Bombey, New Delhi

    Google Scholar 

  • Kraus TE, Mckersie BD, Fletcher RA (1995) Paclobutrazole induced tolerance of wheat leaves to paraquat may involve antioxidant enzyme activity. J Plant Physiol 145:570–576

    Article  CAS  Google Scholar 

  • Kuiper D (1993) Sink strength: Established and regulated by plant growth regulators. Plant Cell Environ 16(9):1025–1026

    Article  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854

    Article  CAS  Google Scholar 

  • Kumar R, Venuprasad R, Atlin GN (2007) Genetic analysis of rainfed lowland rice drought tolerance under naturally-occurring stress in eastern India: Heritability and QTL effects. Field Crop Res 103:42–52

    Article  Google Scholar 

  • Kumar A, Bernier J, Verulkar S, Lafitte HR, Atlin GN (2008) Breeding for drought tolerance: direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crops Res 107(3):221–231

    Article  Google Scholar 

  • Kumar S, Dwivedi SK, Singh SS, Bhatt BP, Mehta P, Elanchezhian R, Singh VP, Singh ON (2014) Morpho-physiological traits associated with reproductive stage drought tolerance of rice (Oryza sativa L.) genotypes under rain-fed condition of eastern Indo-Gangetic Plain. Ind J Plant Physiol 19(2):87–93

    Article  Google Scholar 

  • Lafitte HR, Li ZK, Vijayakumar CHM, Gao YM, Shi Y, Xu JL, Fu BY, Yu SB, Ali AJ, Domingo J, Maghirang R, Torres R, Mackill D (2006) Improvements of rice drought tolerance through backcross breeding: evaluation of donors and selection in drought nurseries. Field Crops Res 97:77–86

    Article  Google Scholar 

  • Lafitte HR, Yongsheng G, Yan S, Li ZK (2007) Whole plant responses, key processes, and adaptation to drought stress: the case of rice. J Exp Bot 58:169–175

    Article  CAS  Google Scholar 

  • Lanceras J, Pantuwan G, Jongdee B, Toojinda T (2004) Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol 135:384–399

    Article  CAS  Google Scholar 

  • Larkunthod P, Nounjan N, Siangliw JL, Toojinda T, Sanitchon J, Jongdee B, eTherakulpisut P (2018) Physiological responses under drought stress of improved drought-tolerant rice lines and their parents. Not Bot Horti Agrobo 46:679–687

    Article  CAS  Google Scholar 

  • Latif HH (2014) Physiological responses of (Pisum sativum) plant to exogenous ABA application under drought condition. Pak J Bot 46(3):973–982

    Google Scholar 

  • Li ZY, Chen SY (1999) Inducible expression of translation elongation factor 1A gene in rice seedlings in response to environmental stresses. Acta Bot Sin 41:800–806

    CAS  Google Scholar 

  • Li ZK, Xu JL (2007) Breeding for drought and salt tolerant rice (Oryza sativa L.): progress and perspective. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding towards salinity and drought tolerance. Springer, Dordrecht, pp 531–564

    Chapter  Google Scholar 

  • Li HW, Zang BS, Deng XW, Wang XP (2011a) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007–1018

    Article  CAS  Google Scholar 

  • Li T, Li H, Zhang YX, Liu JY (2011b) Identification and analysis of seven H2O2-responsive miRNAs and 32new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucleic Acids Res 39:2821–2833

    Article  CAS  Google Scholar 

  • Li CH, Wang G, Zhao JL, Zhang LQ, Ai LF, Han YF, Sun DY, Zhang SW, Sun Y (2014) The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. Plant Cell 26:2538–2553

    Article  CAS  Google Scholar 

  • Li SB, Xie ZZ, Hu CG, Zhang JZ (2016) A review of auxin response factors (ARFs) in plants. Front Plant Sci 7:47

    Google Scholar 

  • Lilley JM, Ludlow MM, McCouch SR, O’toole JC (1996) Locating QTL for osmotic adjustment and dehydration tolerance in rice. J Exp Bot 47:1427–1436

    Article  CAS  Google Scholar 

  • Lim PO, Woo HR, Nam HG (2003) Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci 8:272–278

    Article  CAS  Google Scholar 

  • Lindemose S, O’Shea C, Jensen MK, Skriver K (2013) Structure, function and networks of transcription factors involved in abiotic stress responses. Int J Mol Sci 14:5842–5878

    Article  CAS  Google Scholar 

  • Liu GL, Mei HW, Yu XQ, Zou GH, Liu HY, Li MS, Chen L, Wu JH, Luo LJ (2007a) Panicle water potential, a physiological trait to identify drought tolerance in rice. J Integr Plant Biol 49:1464–1469

    Article  Google Scholar 

  • Liu K, Wang L, Xu Y, Chen N, Ma Q, Li F, Chong K (2007b) Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta 226:1007–1016

    Article  CAS  Google Scholar 

  • Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007c) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52:133–146

    Article  CAS  Google Scholar 

  • Liu CT, Mao BG, Ou SJ, Wang W, Liu LC, Wu YB, Chu CC, Wang XP (2014a) OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol 84(1/2):19–36

    Article  CAS  Google Scholar 

  • Liu H, Guo S, Xu Y, Li C, Zhang Z, Zhang D, Xu S, Zhang C, Chong K (2014b) OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4. Plant Physiol 165:160–174

    Article  CAS  Google Scholar 

  • Liu S, Lv Z, Liu Y, Li L, Zhang L (2018) Network analysis of ABA-dependent and ABA-independent drought responsive genes in Arabidopsis thaliana. Genet Mol Biol 41(3):624–637

    Article  Google Scholar 

  • Lou Q, Chen L, Mei H, Wei H, Feng F, Wang P, Luo L (2015) Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice. J Exp Bot 66:4749–4757

    Article  CAS  Google Scholar 

  • Lu G, Gao C, Zheng X, Han B (2009) Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229:605–615

    Article  CAS  Google Scholar 

  • Lum MS, Hanafi MM, Rafii YM, Akmar ASN (2014) Effect of drought stress on growth, proline and antioxidant enzyme activities of upland rice. J Anim Plant Sci 24(5):1487–1493

    Google Scholar 

  • Maisura MA, Chozin IL, Junaedinand A, Ehara H (2014) Some physiological character responses of rice under drought conditions in a paddy system. J Int Soc Southeast Asian Agric Sci 20(1):104–114

    Google Scholar 

  • Mallikarjuna G, Mallikarjuna K, Reddy MK, Kaul T (2011) Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.). Biotechnol Lett 33:1689–1697

    Article  CAS  Google Scholar 

  • Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: Recent development (new approaches). Plant Growth Regul 34(1):135–148

    Article  CAS  Google Scholar 

  • McCouch S, Teytelman L, Xu Y, Lobos K, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2003) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207

    Article  Google Scholar 

  • Mechler R, Hochrainer S, Kull D, Chopde S, Singh P, Wajih S (2008) Uttar Pradesh drought costbenefit analysis, from risk to resilience. Working Paper No. 5. In: Moench M, Caspari E, Pokhrel A (eds) ISET-Nepal and ProVention. ISET, Kathmandu

    Google Scholar 

  • Menconi M, Sgherri CLM, Pinzino C, NavariIzzo F (1995) Activated oxygen production and detoxification in wheat plants subjected to a water deficit programme. J Exp Bot 46:1123–1130

    Article  CAS  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96

    Article  CAS  Google Scholar 

  • Mostajeran A, Rahimi-Eichi V (2009) Effects of drought stress on growth and yield of rice (Oryza sativa L.) cultivars and accumulation of proline and soluble sugars in sheath and blades of their different ages leaves. Am–Eurasian J Agric Environ Sci 5(2):264–272

    CAS  Google Scholar 

  • Munne-Bosch S, Alegre L (1999) Role of dew on the recovery of water-stressed Melissa officinalis L. plants. J Plant Physiol 154:759–766

    Article  CAS  Google Scholar 

  • Nahakpam S (2017) Effectual tolerant traits for grain yield in rice genotypes grown under drought. J Pharmacogn Phytochem 1:890–897

    Google Scholar 

  • Nahar S, Vemireddy LR, Sahoo L, Tanti B (2018) Antioxidant protection mechanisms reveal significant response in drought-induced oxidative stress in some traditional rice of Assam. India Rice Sci 25(4):185–196

    Article  Google Scholar 

  • Nasrin S, Saha S, Begum HH, Samad R (2020) Impacts of drought stress on growth, protein, proline, pigment content and antioxidant enzyme activities in rice (Oryza sativa L. Var. Brri dhan-24) Dhaka University. J Biol Sci 29(1):117–123

    Google Scholar 

  • Nemeskeri E, Molnar K, Vigh R, Nagy J, Dobos A (2015) Relationships between stomatal behaviour, spectral traits and water use and productivity of green peas (Pisum sativum L.) in dry seasons. Acta Physiol Plant 37:1–16

    Article  CAS  Google Scholar 

  • Nemoto H, Suga R, Ishihara M, Okutsu Y (1998) Deep rooted rice varieties detected through observation of root characteristics using the trench method. Breed Sci 48:321–324

    Google Scholar 

  • Nguyen HT, Babu RC, Blum A (1997) Breeding for drought tolerance in rice: physiology and molecular genetics considerations. Crop Sci 37:1426–1434

    Article  Google Scholar 

  • Niu Y, Zhao T, Xu X, Li J (2017) Genome-wide identification and characterization of GRAS transcription factors in tomato (Solanum lycopersicum). Peer J 5:3955

    Article  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Nonami H (1998) Plant water relations and control of cell elongation at low water potentials. J Plant Res 111:373–382

    Article  Google Scholar 

  • Novak V, Lipiec J (2012) Water extraction by roots under environmental stresses. In: Halasi-Kun J, Stekauerova V, Fodor I, Nagy V, Sinoros-Szabo B, Lo Pinto R (eds) Pollution and water resources, Columbia University seminar proceedings: impact of anthropogenic activity and climate changes on the environment of Central Europe and USA. Slovak Academy of Sciences—Hungarian Academy of Sciences—Columbia University, New York

    Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim JK (2005a) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    Article  CAS  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005b) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138(1):341–351

    Article  CAS  Google Scholar 

  • Oh SJ, Kwon CW, Choi DW, Song SI, Kim JK (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J 5(5):646–656

    Article  CAS  Google Scholar 

  • Oh SJ, Kim YS, Kwon CW, Park HK, Jeong JS, Kim JK (2009) Over-expression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol 150(3):1368–1379

    Article  CAS  Google Scholar 

  • Osmolovskaya N, Shumilina J, Kim A, Didio A, Grishina T, Bilova T, Keltsieva OA, Zhukov V, Tikhonovich I, Tarakhovskaya E, Frolov A, Wessjohann L (2018) Methodology of drought stress research: experimental setup and physiological characterization. Int J Mol Sci 19(4089):1–28

    Google Scholar 

  • O’Toole JC (1982) Adaptation of rice to drought-prone environments. Drought resistance in crops with emphasis on rice. International Rice Research Institute, Los Bafios, pp 195–213

    Google Scholar 

  • O’Toole JC, Chang TT (1979) Drought resistance in cereal. Rice: a case study. Stress physiology in crop plants. Wiley, New York

    Google Scholar 

  • O’Toole JC, Namuco OS (1983) Role of panicle exsertion in water stress induced sterility. Crop Sci 23:1093–1097

    Article  Google Scholar 

  • O’Toole JC, Hsiao TC, Namuco OS (1984) Panicle water relations during water stress. Plant Sci 33:111–114

    Google Scholar 

  • Ouyang SQ, Liu YF, Liu P, Lei G, He SJ, Ma B et al (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J 62:316–329. https://doi.org/10.1111/j.1365-313X.2010.04146.x

    Article  CAS  Google Scholar 

  • Ouyang W, Struik PC, Yin X, Yang J (2017) Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. J Exp Bot 68(18):5191–5205

    Article  CAS  Google Scholar 

  • Palanog AD, Swamy BM, Shamsudin NAA, Dixit S, Hernandez JE, Boromeo TH, Kumar A (2014) Grain yield QTLs with consistent-effect under reproductive-stage drought stress in rice. Field Crop Res 161:46–54

    Article  Google Scholar 

  • Pampolino MF, Manguiat IJ, Ramanathan S, Gines HC, Tan PS, Chi TTN, Rajendran R, Buresh RJ (2007) Environmental impact and economic benefits of site-specific nutrient management (SSNM) in irrigated rice systems. Agric Syst 93(1–3):1–24

    Article  Google Scholar 

  • Panagiotidis CA, Artandi S, Calame K, Silverstein SJ (1995) Polyamines alter sequence-specific DNA-protein interactions. Nucl Acids Res 23(10):1800–1809

    Article  CAS  Google Scholar 

  • Pandey S, Bhandari H (2008) Drought: economic costs and research implications. In: Serraj R, Bennett J, Hardy B (eds) Drought Frontiers in Rice: crop improvement for increased Rainfed production. World Scientific Publishing, Singapore, pp 3–17

    Google Scholar 

  • Pandey V, Shukla A (2015) Acclimation and tolerance strategies of rice under drought stress. Rice Sci 22(4):147–161

    Article  Google Scholar 

  • Parent B, Suard B, Serraj R, Tardieu F (2010) Rice leaf growth and water potential are resilient to evaporative demand and soil water deficit once the effects of root system are neutralized. Plant Cell Environ 33:1256–1267

    Google Scholar 

  • Passioura JB (1996) Drought and drought tolerance. Plant Growth Regul 20(2):79–83

    Article  CAS  Google Scholar 

  • Passioura JB (2007) The drought environment: physical, biological and agricultural perspectives. J Exp Bot 58:113–117

    Article  CAS  Google Scholar 

  • Pastori GM, Trippi VS (1992) Antioxidative protection in a drought-resistant maize strain during leaf senescence. Physiol Plant S7:227–231

    Google Scholar 

  • Paul MJ, Foyer CH (2001) Sink regulation of photosynthesis. J Exp Bot 52:1383–1400

    Article  CAS  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  CAS  Google Scholar 

  • Phung T, Jung HI, Park J, Kim JG, Back K, Jung S (2011) Porphyrin biosynthesis control under water stress: Sustained porphyrin status correlates with drought tolerance in transgenic rice. Plant Physiol 157:1746–1764

    Article  CAS  Google Scholar 

  • Pirasteh-Anosheh H, Saed-Moucheshi A, Pakniyat H, Pessarakli M (2016) Stomatal responses to drought stress. Water stress and crop plants: a sustainable approach. Wiley, Hoboken, pp 24–40

    Chapter  Google Scholar 

  • Pirdashti H, Sarvestani Z, Bahmanyar M (2009) Comparison of physiological responses among four contrast rice cultivars under drought stress conditions. World Acad Sci Eng Technol 49:52–53

    Google Scholar 

  • Pomeranz MC, Hah C, Lin PC, Kang SG, Finer JJ, Blackshear PJ, Jang JC (2010) The Arabidopsis tandem zinc finger protein AtTZF1 tra_cs between the nucleus and cytoplasmic foci and binds both DNA and RNA. Plant Physiol 152:151–165

    Article  CAS  Google Scholar 

  • Prasad S, Kumar A, Kumar A, Mishra V, Kumar K, Dwivedi R, Kumar A, Ram C, Nandan R, Singh MP, Dwivedi DK (2019) Effect of drought stress at reproductive stage of rice (Oryza sativa L.) genotypes. Bull Env Pharmacol Life Sci 83:91–95

    Google Scholar 

  • Price AH, Steele KA, Moore BJ, Barraclough PP, Clark LJ (2000) A combined RFLP and AFLP linkage map of upland rice (Oryza sativa L.) used to identify QTLs for root-penetration ability. Theor Appl Genet 100:49–56

    Article  CAS  Google Scholar 

  • Price AH, Townend J, Jones MP, Audebert A, Courtois B (2002) Mapping QTLs associated with drought avoidance in upland rice grown in the Philippines and West Africa. Plant Mol Biol 48:683–695

    Article  CAS  Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381

    Article  CAS  Google Scholar 

  • Puteh AB, Saragih AA, Ismail MR, Mondal MMA (2013) Grain yield of cultivated and weedy rice to water stress at reproductive stage. J Food Agric Environ 11:742–746

    Google Scholar 

  • Quan RD, Hu SJ, Zhang ZL, Zhang HW, Zhang ZJ, Huang RF (2010) Over expression of an ERF transcription factor TSRF1improves rice drought tolerance. Plant Biotechnol J 8(4):476–488

    Article  CAS  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133(4):1755–1767

    Article  CAS  Google Scholar 

  • Rachmat A, Nugroho S, Sukma D, Aswidinnoor H, Sudarsono S (2014) Overexpression of OsNAC6 transcription factor from Indonesia rice cultivar enhances drought and salt tolerance. Emir J Food Agric 26(6):497–507

    Article  Google Scholar 

  • Rahman ARB, Zhang J (2018) Preferential geographic distribution pattern of abiotic stress tolerant rice. Rice 11(1):1–16

    CAS  Google Scholar 

  • Ramegowda V, Basu S, Krishnan A, Pereira A (2014) Rice GROWTH UNDER DROUGHT KINASE is required for drought tolerance and grain yield under normal and drought stress conditions. Plant Physiol 166(3):1634–1645

    Article  Google Scholar 

  • Rauf S, Al-Khayri JM, Zaharieva M, Monneveux P, Khalil F (2015) Breeding strategies to enhance drought tolerance in crops. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies. Agronomic, abiotic and biotic stress traits. Springer, Cham

    Google Scholar 

  • Ravikumar G, Manimaran P, Voleti SR, Subrahmanyam D, Sundaram RM, Bansal KC, Viraktamath BC, Balachandran SM (2014) Stress-inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice. Transgenic Res 23(3):421–439

    Article  CAS  Google Scholar 

  • Ray JD, Yu L, McCouch SR, Champoux MC, Wang G, Nguyen HT (1996) Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L.). Theor Appl Genet 92:627–636

    Article  CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:189–1202

    Article  Google Scholar 

  • Redillas MCFR, Jeong JS, Kim YS, Jung H, Bang SW, Choi YD, Ha SH, Reuzeau C, Kim J (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J 10:792–805

    Article  CAS  Google Scholar 

  • Reguera M, Peleg Z, Abdel-Tawab YM, Tumimbang EB, Delatorre CA, Blumwald E (2013) Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice. Plant Physiol 163(4):1609–1622

    Article  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulphonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Rhodes D, Samaras Y (1994) Genetic control of osmoregulation in plants. In: Strange SK (ed) Cellular and molecular physiology of cell volume regulation. CRC Press, Boca Raton, pp 347–361

    Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104:19631–19636

    Article  CAS  Google Scholar 

  • Rohila JS, Jain RK, Wu R (2002) Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley HVA1 cDNA. Plant Sci 163:525–532

    Article  CAS  Google Scholar 

  • Roitsch T (1999) Source-sink regulation by sugars and stress. Curr Opin Plant Biol 2:198–206

    Article  CAS  Google Scholar 

  • Ronzhina ES, Mokronosov AT, Sokolova SV (1994) The action of cytokinins on transport and partitioning of substances in detached leaves: 1. Sink and Retention Effects of Cytokinin in Plants of Different Types of Terminal Phloem. Fiziol Rast (Moscow) 41:707–717

    CAS  Google Scholar 

  • Sabar M, Shabir G, Shah SM, Aslam K, Naveed SA, Arif M (2019) Identification and mapping of QTLs associated with drought tolerance traits in rice by a cross between Super Basmati and IR55419-04. Breed Sci Mar 69(1):169–178

    Article  CAS  Google Scholar 

  • Sahebi M, Hanafi MM, Rafii MY, Mahmud TMM, Azizi P, Osman M, Miah G (2018) Improvement of drought tolerance in rice (Oryza sativa L.): genetics, genomic tools, and the WRKY gene family. Bio Med Res Int. https://doi.org/10.1155/2018/3158474

    Article  Google Scholar 

  • Saikumar S, Gouda PK, Saiharini A, Varma CMK, Vineesha O, Padmavathi G, Shenoy VV (2014) Major QTL for enhancing rice grain yield under lowland reproductive drought stress identified using an O. sativa/ O. glaberrimaintrogression line. Field Crop Res 163:119–131

    Article  Google Scholar 

  • Sakakibara H, Takei K, Hirose N (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci 11:440–448

    Article  CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycinebetaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25(2):163–171

    Article  CAS  Google Scholar 

  • Samad AF, Sajad M, Nazaruddin N, Fauzi IA, Murad A, Zainal Z, Ismail I (2017) MicroRNA and transcription factor: key players in plant regulatory network. Front Plant Sci 8:565

    Article  Google Scholar 

  • Samson BK, Hasan M, Wade LJ (2002) Penetration of hardpans by rice lines in the rainfed lowlands. Field Crop Res 76(2–3):175–188

    Article  Google Scholar 

  • Sarani M, Namrudi M, Hashemi SM, Raoofi MM (2014) The effect of drought stress on chlorophyll content, root growth, glucosinolate and proline in crop plants. Intl J Farm Alli Sci 3(9):994–997

    Google Scholar 

  • Sarvestani ZT, Pirdashti H, Sanavy SA, Balouchi H (2008) Study of water stress effects in different growth stages on yield and yield components of different rice (Oryza sativa L.) cultivars. Pak J Biol Sci 11(10):1303–1309

    Article  Google Scholar 

  • Schachtman DP, Goodger JQD (2008) Chemical root to shoot signaling under drought. Trends Plant Sci 13:281–287

    Article  CAS  Google Scholar 

  • Selote DS, Khanna-Chopra R (2004) Drought-induced spikelet sterility is associated with an inefficient antioxidant defence in rice panicles. Physiol Plant 121:462–471

    Article  CAS  Google Scholar 

  • Shamsudin NA, Swamy BPM, Ratnam W, Cruz MTS, Sandhu N, Raman AK, Kumar A (2016a) Pyramiding of drought yield QTLs into a high quality Malaysian rice cultivar MRQ74 improves yield under reproductive stage drought. Rice 9:21

    Article  Google Scholar 

  • Shamsudin NAA, Swamy BM, Ratnam W, Cruz MTS, Sandhu N, Raman AK, Kumar A (2016b) Pyramiding of drought yield QTLs into a high quality Malaysian rice cultivar MRQ74 improves yield under reproductive stage drought. Rice (NY) 9:21

    Article  Google Scholar 

  • Sharkey TD (1990) Water stress effects on photosynthesis. Photosynthetica 24:651

    Google Scholar 

  • Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzyme in growing rice seedling. Plant Growth Regul 46:209–221

    Article  CAS  Google Scholar 

  • Sheela KR, Alexallder VT (1995) Physiological response of rice varieties as influenced by soil moisture and seed hardening. Ind J Plant Physiol 38(3):269–271

    Google Scholar 

  • Shehab GG, Ahmed OK, El-Beltagi HS (2010) Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L.). Not Bot Horti Agrobo Cluj-Napoca 38:139–148

    CAS  Google Scholar 

  • Shim JS, Oh N, Chung PJ, Youn SK, Choi YD, Kim JK (2018) Overexpression of OsNAC14 improves drought tolerance in rice. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00310

    Article  Google Scholar 

  • Singh S, Pradhan S, Singh A, Singh O (2012) Marker validation in recombinant inbred lines and random varieties of rice for drought tolerance. Aust J Crop Sci 6:606–612

    Google Scholar 

  • Singh SP, Jain A, Anantha MS, Tripathi S, Sharma S, Kumar S, Prasad A, Sharma B, Karmakar B, Bhattarai R, Das SP (2017) Depth of soil compaction predominantly affects rice yield reduction by reproductive-stage drought at varietal screening sites in Bangladesh, India, and Nepal. Plant Soil 417(1):377–392

    Article  CAS  Google Scholar 

  • Singh S, Prasad S, Yadav V, Kumar A, Jaiswal B, Kumar A, Khan NA, Dwivedi DK (2018) Effect of drought stress on yield and yield components of rice (Oryza sativa L.) genotypes. Int J Curr Microbiol App Sci 7:2752–2759

    Google Scholar 

  • Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho THD, Qu R (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9

    Article  CAS  Google Scholar 

  • Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotechnol 9:214–219

    Article  CAS  Google Scholar 

  • Solomon S, Qin D, Manning M, Marquis M, Marquis M, Averyt K, Tignor MMB, Miller HL, Chen Z (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Inter govermental Panel on Climate Change. Cambridge University Press, New York

    Google Scholar 

  • Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M, Geiss G, McKhann H, Garcion C, Vaucheret H, Sandberg G (2005) Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell 17:1343–1359

    Article  CAS  Google Scholar 

  • Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166:941–948

    Article  CAS  Google Scholar 

  • Sullivan CY, Ross WM (1979) Stress physiology in crop plants. Wiley, New York, pp 263–281

    Google Scholar 

  • Swamy BPM, Ahmed HU, Henry A, Mauleon R, Dixit S, Vikram P, Tilatto R, Verulkar SB, Perraju P, Mandal NP, Variar M (2013) Genetic, physiological, and gene expression analyses reveal multiple QTL enhance the yield of rice mega-variety IR64 under drought. PLoS One 8:e62795

    Article  Google Scholar 

  • Swamy BPM, Shamsudin NAA, Rahman SNA, Mauleon R, Ratnam W, Sta Cruz MT, Kumar A (2017) Association mapping of yield and yield-related traits under reproductive stage drought stress in rice (Oryza sativa L.). Rice 10:21

    Article  Google Scholar 

  • Swapna S, Shylaraj KS (2017) Screening for osmotic stress responses in rice varieties under drought condition. Rice Sci 24(5):253–263

    Article  Google Scholar 

  • Szekeres M (2003) Brassinosteroid and system in: two hormones perceived by the samereceptor. Trends Plant Sci 8:102–104

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Taylor AG, Allen PS, Bennett MA, Bradford JK, Burris JS, Misra MK (1998) Seed enhancements. Seed Sci Res 8:245–256

    Article  Google Scholar 

  • Tena G, Boudsocq M, Sheen J (2011) Protein kinase signaling networks in plant innate immunity. Curr Opin Plant Biol 14:519–529

    Article  CAS  Google Scholar 

  • Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914–917

    Article  CAS  Google Scholar 

  • Torres RO, McNally KL, Cruz CV et al (2013) Screening of rice Genebank germplasm for yield and selection of new drought tolerance donors. Field Crop Res 147:12–22

    Article  Google Scholar 

  • Torres-Ruiz JM, Diaz-Espejo A, Morales-Sillero A, Martín-Palomo MJ, Mayr S, Beikircher B, Fernández JE (2013) Shoot hydraulic characteristics, plant water status and stomatal response in olive trees under different soil water conditions. Plant Soil 373:77–87

    Article  CAS  Google Scholar 

  • Trijatmiko KR, Prasetiyono J, Thomson MJ, Cruz CMV, Moeljopawiro S, Pereira A (2014) Meta-analysis of quantitative trait loci for grain yield and component traits under reproductive-stage drought stress in an upland rice population. Mol Breed 34:283–295

    Article  CAS  Google Scholar 

  • Tripathy JN, Zhang J, Robin S, Nguyen TT, Nguyen HT (2000) QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress. Theor Appl Genet 100:1197–1202

    Article  CAS  Google Scholar 

  • Turner NC (1979) Drought resistance and adaptation to water deficits in crop plants. In: Mussell H, Staples CR (eds) Stress physiology in crop plants. Wiley, New York, pp 343–372

    Google Scholar 

  • Turner NC, O’Toole JC, Cruz RT, Namuco OS, Ahmad S (1986) Response of seven diverse rice cultivars to water deficits. I. Stress development, canopy temperature, leaf rolling and growth. Field Crops Res 13:257–271

    Article  Google Scholar 

  • Usman M, Raheem ZF, Ahsan T, Iqbal A, Sarfaraz ZN, Haq Z (2013) Morphological, physiological and biochemical attributes as indicators for drought tolerance in rice (Oryza sativa L.). Eur J Biol Sci 5(1):23–28

    Google Scholar 

  • Usman MG, Rafii MY, Martini MY, Yusuf OA, Ismail MR, Miah G (2017) Molecular analysis of Hsp70 mechanisms in plants and their function in response to stress. Biotechnol Genet Eng Rev 33:26–39

    Article  CAS  Google Scholar 

  • Vajrabhaya M, Kumpun W, Chadchawan S (2001) The solute accumulation: The mechanism for drought tolerance in RD23 rice (Oryza sativa L.) lines. Sci Asia 27:93–97

    Article  CAS  Google Scholar 

  • Venuprasad R, Lafitte HR, Atlin GN (2007) Response to direct selection for grain yield under drought stress in rice. Crop Sci 47:285–293

    Article  Google Scholar 

  • Venuprasad R, Cruz MT, Amante M, Magbanua R, Kumar A, Atlin GN (2008) Response to two cycles of divergent selection for grain yield under drought stress in four rice breeding populations. Field Crop Res 107:232–244

    Article  Google Scholar 

  • Venuprasad R, Dalid CO, Del Valle M, Zhao D, Espiritu M, Cruz MS, Atlin GN (2009) Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theor Appl Genet 120:177–190

    Article  Google Scholar 

  • Venuprasad R, Bool ME, Quiatchon L, Atlin GNA (2012) QTL for rice grain yield in aerobic environments with large effects in three genetic backgrounds. Theor Appl Genet 124:323–332

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35(4):753–759

    Article  CAS  Google Scholar 

  • Verstraeten WW, Veroustraete F, Feyen J (2008) Assessment of evapotranspiration and soil moisture content across different scales of observation. Sensors 8(1):70–117

    Article  Google Scholar 

  • Vikram P, Swamy BM, Dixit S, Ahmed HU, Cruz MTS, Singh AK, Kumar A (2011) qDTY1.1, a major QTL for Rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet 12(1):89

    Article  CAS  Google Scholar 

  • Vikram P, Swamy BM, Dixit S, Ahmed H, Cruz MS, Singh AK, Kumar A (2012) Bulk segregant analysis:”An effective approach for mapping consistent-effect drought grain yield QTLs in rice”. Field Crop Res 134:185–192

    Article  Google Scholar 

  • Von Caemmerer S (2003) C4 photosynthesis in a single C3 cell is theoretically inefficient but may ameliorate internal CO2 diffusion limitations of C3 leaves. Plant Cell Environ 26:1191–1197

    Article  Google Scholar 

  • Wang P, Song CP (2008) Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol 178:703–718

    Article  CAS  Google Scholar 

  • Wang Z, Xiong Y, Wang M (2000) Study on expert system of irrigation forecast and decision making for water saving. Institute of Agricultural Soil Water Engineering of North West Science and Technology University of Agriculture Forestry, Yangling

    Google Scholar 

  • Wang H, Inukai Y, Yamauchi A (2006) Root development and nutrient uptake. Crit Rev Plant Sci 25:279–301

    Article  CAS  Google Scholar 

  • Wang S, Xia S, Peng K, Kuang F, Cao Y, Xiao L (2007) Effects of formulated fertilizer synergist on abscisic acid accumulation, proline content and photosynthetic characteristics of rice under drought. Rice Sci 14:42–48

    Article  CAS  Google Scholar 

  • Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67(6):589–602

    Article  CAS  Google Scholar 

  • Wang Y, Zhang Q, Zheng T, Cui Y, Zhang W, Xu J, Li Z (2014) Drought-tolerance QTLs commonly detected in two sets of reciprocal introgression lines in rice. Crop Pasture Sci 65:171–184

    Article  Google Scholar 

  • Wang X, Liu H, Yu F, Hu B, Jia Y, Sha H, Zhao H (2019) Differential activity of the antioxidant defense system and alterations in the accumulation of osmolyte and reactive oxygen species under drought stress and recovery in rice (Oryza sativa L.) tillering. Sci Rep 9:8543

    Article  Google Scholar 

  • Wopereis MCS, Kropff MJ, Maligaya AR, Tuong TP (1996) Drought-stress responses of two lowland rice cultivars to soil water status. Field Crops Res 46:21–39

    Article  Google Scholar 

  • Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148:1938–1952

    Article  CAS  Google Scholar 

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115:35–46

    Article  CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    Article  CAS  Google Scholar 

  • Xu X, Bai H, Liu C, Chen E, Chen Q, Zhuang J, Shen B (2014) Genome-wide analysis of microRNAs andtheir target genes related to leaf senescence of rice. PLoS ONE 9:e114313

    Article  Google Scholar 

  • Yadav R, Courtois B, Huang N, McLaren G (1997) Mapping genes controlling root morphology and root distribution in a doubled-haploid population of rice. Theor Appl Genet 94:619–632

    Article  CAS  Google Scholar 

  • Yadav RB, Dixit S, Raman A, Mishra KK, Vikram P, Swamy BM, Kumar A (2013) A QTL for high grain yield under lowland drought in the background of popular rice variety Sabitri from Nepal. Field Crop Res 144:281–287

    Article  Google Scholar 

  • Yadira OC, Reyes JL, Alejandra AC (2011) Late embryogenesis abundant proteins. Plant Signal Behav 6:586–589

    Article  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10(2):88–94

    Article  CAS  Google Scholar 

  • Yang JH, Han SJ, Yoon EK, Lee WS (2006) Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells. Nucleic Acids Res 34:1892–1899

    Article  CAS  Google Scholar 

  • Yang J, Zhang J, Liu K, Wang Z, Liu L (2007) Involvement of polyamines in the drought resistance of rice. J Exp Bot 58:1545–1555

    Article  CAS  Google Scholar 

  • Yang PM, Huang QC, Qin GY, Zhao SP, Zhou JG (2014) Different drought-stress responses in photosynthesis and reactive oxygen metabolism between autotetraploid and diploid rice. Photosynthetica 52(2):193–202

    Article  CAS  Google Scholar 

  • Yang X, Wang B, Chen L, Li P, Cao C (2019) The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Sci Rep 9:3742

    Article  Google Scholar 

  • Ye N, Zhu G, Liu Y, Li Y, Zhang J (2011) ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress. Plant Cell Physiol 5:689–698

    Article  Google Scholar 

  • Yoshida S (1981) Fundamentals of rice crop science. The International Rice Research Institute, Los Banos

    Google Scholar 

  • Yoshida S, Hasegawa S (1982) Drought resistance in crops with emphasis on rice. International Rice Research Institute, Manila

    Google Scholar 

  • You J, Hu H, Xiong L (2012) An ornithine_-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice. Plant Sci 197:59–69

    Article  CAS  Google Scholar 

  • You J, Zong W, Li X, Ning J, Hu H, Li X, Xiong L (2013) The SNAC1-targeted gene OsSRO1c modulates stomata closure and oxidative stress tolerance by regulating hydrogen peroxide in rice. J Exp Bot 64:569–583

    Article  CAS  Google Scholar 

  • Yue B, Xue W, Xiong L, Yu X, Luo L, Cui K, Jin D, Xing Y, Zhang Q (2006) Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics 172(2):1213–1228

    Article  Google Scholar 

  • Zhang J, Zheng HG, Aarti A, Pantuwan G, Nguyen TT, Tripathy JN, Sarkarung S (2001) Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species. Theor Appl Genet 103:19–29

    Article  CAS  Google Scholar 

  • Zhang Z, Li F, Li D, Zhang H, Huang R (2010a) Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta 232:765–774

    Article  CAS  Google Scholar 

  • Zhang ZJ, Li F, Li DJ, Zhang HW, Huang RF (2010b) Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta 232(3):765–774

    Article  CAS  Google Scholar 

  • Zhang L, Xiao S, Li W, Feng W, Li J, Wu Z, Shao M (2011) Overexpression of a Harpin-encoding gene hrf1 in rice enhances drought tolerance. J Exp Bot 62:4229–4238

    Article  CAS  Google Scholar 

  • Zhang C, Bai MY, Chong K (2014) Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Rep 33:683–696

    Article  CAS  Google Scholar 

  • Zhang H, Zhang J, Yan J, Gou F, Mao Y, Tang G, Botella JR, Zhu JK (2017) Short tandem target mimic rice lines uncover functions of miRNAs in regulating important agronomic traits. Proc Natl Acad Sci USA 114:5277–5282

    Article  CAS  Google Scholar 

  • Zhang J, Zhang S, Cheng M, Jiang H, Zhang X, Peng C, Lu X, Zhang M, Jin J (2018a) Effect of drought on agronomic traits of rice and wheat: a meta-analysis. Int J Environ Res Public Health 15(839):1–14

    Google Scholar 

  • Zhang J, Zhang H, Srivastava AK, Pan Y, Bai J, Fang J, Shi H, Zhu JK (2018b) Knockdown of rice MicroRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development. Plant Physiol 176:2082–2094

    Article  CAS  Google Scholar 

  • Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H et al (2007) Identification of drought-induced microRNAs in rice. Biochem Bioph Res Commun 354:585–590. https://doi.org/10.1016/j.bbrc.2007.01.022

    Article  CAS  Google Scholar 

  • Zheng BS, Yang L, Zhang WP, Mao CZ, Wu YR, Yi KK, Wu P (2003) Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. TheorAppl Genet 107:1505–1515

    Article  CAS  Google Scholar 

  • Zheng BS, Yang L, Mao CZ, Huang YJ, Wu P (2008) Mapping QTLs for morphological traits under two water supply conditions at the young seedling stage in rice. Plant Sci 175:767–776

    Article  CAS  Google Scholar 

  • Zheng XN, Chen B, Lu GJ, Han B (2009) Overexpression of aNAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379(4):985–989

    Article  CAS  Google Scholar 

  • Zhou Y, Lam HM, Zhang J (2007) Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. J Exp Bot 58:1207–1217

    Article  CAS  Google Scholar 

  • Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168

    Article  CAS  Google Scholar 

  • Zhou L, Xu H, Mischke S, Meinhardt LW, Zhang DP, Zhu XJ, Li XH, Fang WP (2014) Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress. Hort Res 1:14029

    Article  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  Google Scholar 

  • Zhu B, Su J, Chang M, Verma DPS, Fan YL, Wu R (1998) Overexpression of a D1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice. Plant Sci 139:41–48

    Article  CAS  Google Scholar 

  • Zu X, Lu Y, Wang Q, Chu P, Miao W, Wang H, La H (2017) A new method for evaluating the drought tolerance of upland rice cultivars. Crop J 5(6):488–498

    Article  Google Scholar 

  • Ahmadi N (1985) Plant physiology (photosynthesis and nutrition). 1st Edn. Center for Academic Publication. pp 14–16

  • Basnayake J, Fukai S, Ouk M (2006) Contribution of potential yield, drought tolerance and escape to adaptation of 15 rice varieties in rainfed lowlands in Cambodia. In: Proceedings of the Australian Agronomy Conference, Australian Society of Agronomy, Birsbane, Australia

  • Blum A (2007). The mitigation of drought stress. Available at http://www.plantstress.com/articles/droughtm/droughtm.htm.

  • FAOSTAT (2018–19). Available at http://www.fao.org/faostat/en/#data/QC

  • Fishel FM (2006) Plant growth regulators. Document PI-139, Pesticide Information Office, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida

Download references

Acknowledgements

This study was supported by Sardar Vallabhbhai Patel University of Agriculture and Technology, Modipuram, Meerut. The author, Arun Kumar is highly grateful to Indian Council of Agricultural Research, New Delhi, India for financial support in the form of Senior Research Fellowship (ICAR-SRF).

Author information

Authors and Affiliations

Authors

Contributions

RSS and AKS conceptualized the manuscript. AK wrote the manuscript. RKP and AKS edited the manuscript and contributed in critically revising the draft and updating the manuscript for publication. All authors read and approved the submitted version.

Corresponding authors

Correspondence to R. S. Sengar or Amit Kumar Singh.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Handling Editor: Mikihisa Umehara.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Sengar, R.S., Pathak, R.K. et al. Integrated Approaches to Develop Drought-Tolerant Rice: Demand of Era for Global Food Security. J Plant Growth Regul 42, 96–120 (2023). https://doi.org/10.1007/s00344-021-10561-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-021-10561-6

Keywords

Navigation