Skip to main content

01.12.2010 | Research Article

Characteristics of counter-rotating vortex rings formed ahead of a compressible vortex ring

verfasst von: Murugan Thangadurai, Debopam Das

Erschienen in: Experiments in Fluids | Ausgabe 6/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Characteristics of high Mach number compressible vortex ring generated at the open end of a short driver section shock tube is studied experimentally using high-speed laser sheet-based flow visualization. The formation mechanism and the evolution of counter rotating vortex ring (CRVR) formed ahead of the primary vortex ring are studied in details for shock Mach number (M) 1.7, with different driver section lengths. It has been observed that the strength of the embedded shock, which appears at high M, increases with time due to the flow expansion in the generating jet. Strength of the embedded shock also varies with radius; it is strong at smaller radii and weak at larger radii; hence, it creates a velocity gradient ahead of the embedded shock. At critical Mach number (M c ≥ 1.6), this shear layer rolls up and forms a counter rotating vortex ring due to Biot-Savart induction of the vortex sheet. For larger driver section lengths, the embedded shock and the resultant shear layer persists for a longer time, resulting in the formation of multiple CRVRs due to Kelvin–Helmholtz type instability of the vortex sheet. CRVRs roll over the periphery of the primary vortex ring; they move upstream due to their self-induced velocity and induced velocity imparted by primary ring, and interact with the trailing jet. Formation of these vortices depends strongly upon the embedded shock strength and the length of the generating jet. Primary ring diameter increases rapidly during the formation and the evolution of CRVR due to induced velocity imparted on the primary ring by CRVR. Induced velocity of CRVR also affects the translational velocity of the primary ring considerably.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agui JH, Briassulis G, Andreopoulos Y (2005) Studies of interactions of a propagating shock wave with decaying grid turbulence: velocity and vorticity fields. J Fluid Mech 524:143–195MATHCrossRef Agui JH, Briassulis G, Andreopoulos Y (2005) Studies of interactions of a propagating shock wave with decaying grid turbulence: velocity and vorticity fields. J Fluid Mech 524:143–195MATHCrossRef
Zurück zum Zitat Anderson JD (1982) Modern compressible flow. McGraw-Hill, New York City, pp 303–305 Anderson JD (1982) Modern compressible flow. McGraw-Hill, New York City, pp 303–305
Zurück zum Zitat Andreopoulos Y, Agui JH, Briassulis G (2000) Shock wave—turbulence interactions. Annu Rev Fluid Mech 32:309–345CrossRefMathSciNet Andreopoulos Y, Agui JH, Briassulis G (2000) Shock wave—turbulence interactions. Annu Rev Fluid Mech 32:309–345CrossRefMathSciNet
Zurück zum Zitat Arakeri JH, Das D, Krothapalli A, Lourenco L (2004) Vortex ring formation at the open end of a shock tube: a PIV study. Phys Fluids 16:1008–1019CrossRef Arakeri JH, Das D, Krothapalli A, Lourenco L (2004) Vortex ring formation at the open end of a shock tube: a PIV study. Phys Fluids 16:1008–1019CrossRef
Zurück zum Zitat Aure R, Jacobs JW (2008) Particle image velocimetry study of the shock-induced single mode Richtmyer–Meshkov instability. Phys Fluids 18:161–167MATH Aure R, Jacobs JW (2008) Particle image velocimetry study of the shock-induced single mode Richtmyer–Meshkov instability. Phys Fluids 18:161–167MATH
Zurück zum Zitat Baird JP (1987) Supersonic vortex rings. Proc R Soc London A 409:59–65CrossRef Baird JP (1987) Supersonic vortex rings. Proc R Soc London A 409:59–65CrossRef
Zurück zum Zitat Brouillette M, Hebert C (1997) Propagation and interaction of shock-generated vortices. Fluid Dyn Res 21:159–169CrossRef Brouillette M, Hebert C (1997) Propagation and interaction of shock-generated vortices. Fluid Dyn Res 21:159–169CrossRef
Zurück zum Zitat Brouillette M, Tardif J, Gauthier E (1995) Experimental study of shock-generated vortex rings. In: Brun R, Dumitresu LZ (eds) Shock Waves @ Marseille. Springer, Berlin, pp 361–366 Brouillette M, Tardif J, Gauthier E (1995) Experimental study of shock-generated vortex rings. In: Brun R, Dumitresu LZ (eds) Shock Waves @ Marseille. Springer, Berlin, pp 361–366
Zurück zum Zitat Cetegen BM, Hermanson JC (1995) Mixing characteristics of compressible vortex rings interacting with normal shock waves. Combust Flame 100:232–240CrossRef Cetegen BM, Hermanson JC (1995) Mixing characteristics of compressible vortex rings interacting with normal shock waves. Combust Flame 100:232–240CrossRef
Zurück zum Zitat Elder FK, Hass N (1952) Experimental study of the formation of a vortex ring at the open end of a cylindrical shock tube. J Appl Phys 23:1065–1069CrossRef Elder FK, Hass N (1952) Experimental study of the formation of a vortex ring at the open end of a cylindrical shock tube. J Appl Phys 23:1065–1069CrossRef
Zurück zum Zitat Glezer A (1988) The formation vortex rings. Phys Fluids 31:3532–3542CrossRef Glezer A (1988) The formation vortex rings. Phys Fluids 31:3532–3542CrossRef
Zurück zum Zitat Haertig J, Rey C, Havermann M (2006) PIV measurements of compressible vortex rings generated by a shock tube. 13th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, June 26–29, 2006 Haertig J, Rey C, Havermann M (2006) PIV measurements of compressible vortex rings generated by a shock tube. 13th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, June 26–29, 2006
Zurück zum Zitat Kontis K, An R, Edwards JA (2006) Compressible vortex-ring studies with a number of generic body configurations. AIAA J 44:2962–2978CrossRef Kontis K, An R, Edwards JA (2006) Compressible vortex-ring studies with a number of generic body configurations. AIAA J 44:2962–2978CrossRef
Zurück zum Zitat Kontis K, An R, Zare-Behtash H, Kounadis D (2008) Head-on collision of shock wave induced vortices with solid and perforated walls. Phys Fluids 20:016104CrossRef Kontis K, An R, Zare-Behtash H, Kounadis D (2008) Head-on collision of shock wave induced vortices with solid and perforated walls. Phys Fluids 20:016104CrossRef
Zurück zum Zitat Lim TT (1997) On the role of Kelvin-Helmholtz-like instability in the formation of turbulent vortex rings. Fluid Dyn Res 21:47–56CrossRef Lim TT (1997) On the role of Kelvin-Helmholtz-like instability in the formation of turbulent vortex rings. Fluid Dyn Res 21:47–56CrossRef
Zurück zum Zitat Minota T (1998) Shock/vortex interaction in a flow field behind a shock wave emitted from a shock tube. Proceedings of 2nd International Workshop on Shock Wave/Vortex Interaction, Sendai, Japan: 149–160 Minota T (1998) Shock/vortex interaction in a flow field behind a shock wave emitted from a shock tube. Proceedings of 2nd International Workshop on Shock Wave/Vortex Interaction, Sendai, Japan: 149–160
Zurück zum Zitat Moore DW (1985) The Effect of compressibility on the speed of propagation of a vortex ring. Proc R Soc London A 397:87–97MATHCrossRef Moore DW (1985) The Effect of compressibility on the speed of propagation of a vortex ring. Proc R Soc London A 397:87–97MATHCrossRef
Zurück zum Zitat Murugan T (2008) Flow and Acoustic Characteristics of High Mach number Vortex Rings during Evolution and Wall-interaction: An Experimental Investigation. Ph.D. Thesis, Department of Aerospace Engineering, Indian Institute of Technology, Kanpur Murugan T (2008) Flow and Acoustic Characteristics of High Mach number Vortex Rings during Evolution and Wall-interaction: An Experimental Investigation. Ph.D. Thesis, Department of Aerospace Engineering, Indian Institute of Technology, Kanpur
Zurück zum Zitat Murugan T, Das D (2007a) Experimental investigation of acoustic characteristics of compressible vortex rings. 2nd European conference for Aerospace science 1–6 July, Brussels, Belgium Murugan T, Das D (2007a) Experimental investigation of acoustic characteristics of compressible vortex rings. 2nd European conference for Aerospace science 1–6 July, Brussels, Belgium
Zurück zum Zitat Murugan T, Das D (2007b) Structure and acoustic characteristics of supersonic vortex ring. FLUCOME 2007 (9th International Symposium on Fluid Control, Measurement and Visualization) 16-21 September, Tallahassee, Florida Murugan T, Das D (2007b) Structure and acoustic characteristics of supersonic vortex ring. FLUCOME 2007 (9th International Symposium on Fluid Control, Measurement and Visualization) 16-21 September, Tallahassee, Florida
Zurück zum Zitat Murugan T, Das D (2008) On evolution and acoustic characteristics of a compressible vortex ring. I J Aeroacoustics 7:199–222CrossRef Murugan T, Das D (2008) On evolution and acoustic characteristics of a compressible vortex ring. I J Aeroacoustics 7:199–222CrossRef
Zurück zum Zitat Murugan T, Das D (2009) On the evolution of counter rotating vortex ring formed ahead of a compressible vortex ring. J Visual 12(1):3 Murugan T, Das D (2009) On the evolution of counter rotating vortex ring formed ahead of a compressible vortex ring. J Visual 12(1):3
Zurück zum Zitat Nitsche M, Krasny R (1994) Numerical study of vortex ring formation at the edge of a circular tube. J Fluid Mech 276:139–161MATHCrossRefMathSciNet Nitsche M, Krasny R (1994) Numerical study of vortex ring formation at the edge of a circular tube. J Fluid Mech 276:139–161MATHCrossRefMathSciNet
Zurück zum Zitat Phan KC, Stollery JL (1983) The effect of suppressors and muzzle brakes on shock wave strength. Proceedings of the 14th International Symposium on Shock Tubes and Waves, Springer, Berlin, pp. 123–129 Phan KC, Stollery JL (1983) The effect of suppressors and muzzle brakes on shock wave strength. Proceedings of the 14th International Symposium on Shock Tubes and Waves, Springer, Berlin, pp. 123–129
Zurück zum Zitat Pullin DI (1979) Vortex ring formation at the tube and orifice opening. Phys Fluids 22:401–403CrossRef Pullin DI (1979) Vortex ring formation at the tube and orifice opening. Phys Fluids 22:401–403CrossRef
Zurück zum Zitat Thomson W (Lord Kelvin) (1871) Hydrokinetic solutions and observations. Phil Mag 42: 362–377 Thomson W (Lord Kelvin) (1871) Hydrokinetic solutions and observations. Phil Mag 42: 362–377
Zurück zum Zitat Zare-Behtash H, Kontis K, Gongora-Orozco N (2008) Experimental investigations of compressible vortex loops. Phys Fluids 20:126105CrossRef Zare-Behtash H, Kontis K, Gongora-Orozco N (2008) Experimental investigations of compressible vortex loops. Phys Fluids 20:126105CrossRef
Metadaten
Titel
Characteristics of counter-rotating vortex rings formed ahead of a compressible vortex ring
verfasst von
Murugan Thangadurai
Debopam Das
Publikationsdatum
01.12.2010
Verlag
Springer-Verlag
Erschienen in
Experiments in Fluids / Ausgabe 6/2010
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-010-0868-2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.