Skip to main content
Erschienen in: Experiments in Fluids 1/2012

01.01.2012 | Research Article

Flow structure on a rotating plate

verfasst von: C. A. Ozen, D. Rockwell

Erschienen in: Experiments in Fluids | Ausgabe 1/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The flow structure on a rotating plate of low aspect ratio is characterized well after the onset of motion, such that transient effects are not significant, and only centripetal and Coriolis accelerations are present. Patterns of vorticity, velocity contours, and streamline topology are determined via quantitative imaging, in order to characterize the leading-edge vortex in relation to the overall flow structure. A stable leading-edge vortex is maintained over effective angles of attack from 30° to 75°, and at each angle of attack, its sectional structure at midspan is relatively insensitive to Reynolds number over the range from 3,600 to 14,500. The streamline topology, vorticity distribution, and circulation of the leading-edge vortex are determined as a function of angle of attack, and related to the velocity field oriented toward, and extending along, the leeward surface of the plate. The structure of the leading-edge vortex is classified into basic regimes along the span of the plate. Images of these regimes are complemented by patterns on crossflow planes, which indicate the influence of root and tip swirl, and spanwise flow along the leeward surface of the plate. Comparison with the equivalent of the purely translating plate, which does not induce the foregoing flow structure, further clarifies the effects of rotation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aono H, Liang F, Liu H (2008) Near- and far-field aerodynamics in insect hovering flight: an integrated computational study. J Exp Biol 211:239–257CrossRef Aono H, Liang F, Liu H (2008) Near- and far-field aerodynamics in insect hovering flight: an integrated computational study. J Exp Biol 211:239–257CrossRef
Zurück zum Zitat Birch JM, Dickinson MH (2001) Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412:729–733CrossRef Birch JM, Dickinson MH (2001) Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412:729–733CrossRef
Zurück zum Zitat Birch JM, Dickinson MH (2003) The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight. J Exp Biol 206:2257–2272CrossRef Birch JM, Dickinson MH (2003) The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight. J Exp Biol 206:2257–2272CrossRef
Zurück zum Zitat Birch JM, Dickson WB, Dickinson MH (2004) Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. J Exp Biol 207:1063–1072CrossRef Birch JM, Dickson WB, Dickinson MH (2004) Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. J Exp Biol 207:1063–1072CrossRef
Zurück zum Zitat Bomphrey RJ, Lawson NJ, Taylor GK, Thomas ALR (2006) Application of digital particle image velocimetry to insect aerodynamics: measurement of the leading-edge vortex and near wake of a Hawkmoth. Exp Fluids 40:546–554CrossRef Bomphrey RJ, Lawson NJ, Taylor GK, Thomas ALR (2006) Application of digital particle image velocimetry to insect aerodynamics: measurement of the leading-edge vortex and near wake of a Hawkmoth. Exp Fluids 40:546–554CrossRef
Zurück zum Zitat DeVoria A, Mahajan P, Ringuette MJ (2011) Vortex formation and saturation for low-aspect-ratio rotating flat plates at low Reynolds number. In: 49th AIAA aero sci meeting Orlando, Florida DeVoria A, Mahajan P, Ringuette MJ (2011) Vortex formation and saturation for low-aspect-ratio rotating flat plates at low Reynolds number. In: 49th AIAA aero sci meeting Orlando, Florida
Zurück zum Zitat Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRef Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRef
Zurück zum Zitat Eldredge JD, Wang CJ, Ol M (2009) A computational study of a canonical pitch-up, pitch-down wing maneuver. AIAA, 3687 Eldredge JD, Wang CJ, Ol M (2009) A computational study of a canonical pitch-up, pitch-down wing maneuver. AIAA, 3687
Zurück zum Zitat Ellington CP (1984) The aerodynamics of hovering insect flight, I–II–III–IV–V–VI. Philos Trans R Soc B 305:1–181CrossRef Ellington CP (1984) The aerodynamics of hovering insect flight, I–II–III–IV–V–VI. Philos Trans R Soc B 305:1–181CrossRef
Zurück zum Zitat Ellington CP, van den Berg C, Willmott AP, Thomas ALR (1996) Leading-edge vortices in insect flight. Nature 384:626–630CrossRef Ellington CP, van den Berg C, Willmott AP, Thomas ALR (1996) Leading-edge vortices in insect flight. Nature 384:626–630CrossRef
Zurück zum Zitat Jones AR, Babinsky H (2011) Reynolds number effects on leading edge vortex development on a waving wing. Exp Fluids Issn 0723–4864:1–14 Jones AR, Babinsky H (2011) Reynolds number effects on leading edge vortex development on a waving wing. Exp Fluids Issn 0723–4864:1–14
Zurück zum Zitat Kim D, Gharib M (2010) Experimental study of three-dimensional vortex structures in translating and rotating plates. Exp Fluids 49:329–339CrossRef Kim D, Gharib M (2010) Experimental study of three-dimensional vortex structures in translating and rotating plates. Exp Fluids 49:329–339CrossRef
Zurück zum Zitat Kweon J, Choi H (2010) Sectional lift coefficient of a flapping wing in hovering motion. Phys Fluids 22:071703CrossRef Kweon J, Choi H (2010) Sectional lift coefficient of a flapping wing in hovering motion. Phys Fluids 22:071703CrossRef
Zurück zum Zitat Lehmann FO (2004) The mechanisms of lift enhancement in insect flight. Naturwissenschaften 91:101–122CrossRef Lehmann FO (2004) The mechanisms of lift enhancement in insect flight. Naturwissenschaften 91:101–122CrossRef
Zurück zum Zitat Lentink D, Dickinson MH (2009a) Biofluiddynamic scaling of flapping, spinning and translating fins and wings. J Exp Biol 212:2691–2704CrossRef Lentink D, Dickinson MH (2009a) Biofluiddynamic scaling of flapping, spinning and translating fins and wings. J Exp Biol 212:2691–2704CrossRef
Zurück zum Zitat Lentink D, Dickinson MH (2009b) Rotational accelerations stabilize leading edge vortices on revolving fly wings. J Exp Biol 212:2705–2719CrossRef Lentink D, Dickinson MH (2009b) Rotational accelerations stabilize leading edge vortices on revolving fly wings. J Exp Biol 212:2705–2719CrossRef
Zurück zum Zitat Liu H, Ellington CP, Kawachi K, van den Berg C, Willmott AP (1998) A computational fluid dynamic study of hawkmoth hovering. J Exp Biol 201:461–477 Liu H, Ellington CP, Kawachi K, van den Berg C, Willmott AP (1998) A computational fluid dynamic study of hawkmoth hovering. J Exp Biol 201:461–477
Zurück zum Zitat Lu Y, Shen GX (2008) Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing. J Exp Biol 211:1221–1230CrossRef Lu Y, Shen GX (2008) Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing. J Exp Biol 211:1221–1230CrossRef
Zurück zum Zitat Luo G, Sun M (2005) The effects of corrugation and wing planform on the aerodynamic force production of sweeping model insect wings. Acta Mech Sinica 21:531–541CrossRefMATH Luo G, Sun M (2005) The effects of corrugation and wing planform on the aerodynamic force production of sweeping model insect wings. Acta Mech Sinica 21:531–541CrossRefMATH
Zurück zum Zitat Poelma C, Dickson WB, Dickinson MH (2006) Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing. Exp Fluids 41:213–225CrossRef Poelma C, Dickson WB, Dickinson MH (2006) Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing. Exp Fluids 41:213–225CrossRef
Zurück zum Zitat Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206:4191–4208CrossRef Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206:4191–4208CrossRef
Zurück zum Zitat Shyy W, Aono H, Chimakurthi SK, Trizila P, Kang CK, Cesnik CES, Liu H (2010) Recent progress in flapping wing aerodynamics and aeroelasticity. Prog Aerosp Sci 46:284–327CrossRef Shyy W, Aono H, Chimakurthi SK, Trizila P, Kang CK, Cesnik CES, Liu H (2010) Recent progress in flapping wing aerodynamics and aeroelasticity. Prog Aerosp Sci 46:284–327CrossRef
Zurück zum Zitat Sun M, Tang J (2002) Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J Exp Biol 205:55–70 Sun M, Tang J (2002) Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J Exp Biol 205:55–70
Zurück zum Zitat Thomas ALR, Taylor GK, Srygley RB, Nudds RL, Bomphrey RJ (2004) Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. J Exp Biol 207:4299–4323CrossRef Thomas ALR, Taylor GK, Srygley RB, Nudds RL, Bomphrey RJ (2004) Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. J Exp Biol 207:4299–4323CrossRef
Zurück zum Zitat Usherwod JR, Ellington CP (2002) The aerodynamics of revolving wings, I–II. J Exp Biol 205:1547–1576 Usherwod JR, Ellington CP (2002) The aerodynamics of revolving wings, I–II. J Exp Biol 205:1547–1576
Zurück zum Zitat van den Berg C, Ellington CP (1997) The three-dimensional leading-edge vortex of a ‘hovering’ model hawkmoth. Philos Trans R Soc B 352:329–340CrossRef van den Berg C, Ellington CP (1997) The three-dimensional leading-edge vortex of a ‘hovering’ model hawkmoth. Philos Trans R Soc B 352:329–340CrossRef
Zurück zum Zitat Wang ZJ (2005) Dissecting insect flight. Annu Rev Fluid Mech 37:183–210CrossRef Wang ZJ (2005) Dissecting insect flight. Annu Rev Fluid Mech 37:183–210CrossRef
Zurück zum Zitat Wang ZJ, Birch JM, Dickinson MH (2004) Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments. J Exp Biol 207:449–460CrossRef Wang ZJ, Birch JM, Dickinson MH (2004) Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments. J Exp Biol 207:449–460CrossRef
Zurück zum Zitat Willmott AP, Ellington CP (1997) The mechanics of flight in the hawkmoth Manducasexta. II. Aerodynamic consequences of kinematic and morphological variation. J Exp Biol 200:2723–2745 Willmott AP, Ellington CP (1997) The mechanics of flight in the hawkmoth Manducasexta. II. Aerodynamic consequences of kinematic and morphological variation. J Exp Biol 200:2723–2745
Zurück zum Zitat Willmott AP, Ellington CP, Thomas ALR (1997) Flow visualization and unsteady aerodynamics in the flight of the hawkmoth, Manducasexta. Philos Trans R Soc B 352:303–316CrossRef Willmott AP, Ellington CP, Thomas ALR (1997) Flow visualization and unsteady aerodynamics in the flight of the hawkmoth, Manducasexta. Philos Trans R Soc B 352:303–316CrossRef
Zurück zum Zitat Zanker JM (1990) The wing beat of Drosophila Melanogaster, I–II–III. Philos Trans R Soc B 327:1–18CrossRef Zanker JM (1990) The wing beat of Drosophila Melanogaster, I–II–III. Philos Trans R Soc B 327:1–18CrossRef
Metadaten
Titel
Flow structure on a rotating plate
verfasst von
C. A. Ozen
D. Rockwell
Publikationsdatum
01.01.2012
Verlag
Springer-Verlag
Erschienen in
Experiments in Fluids / Ausgabe 1/2012
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-011-1215-y

Weitere Artikel der Ausgabe 1/2012

Experiments in Fluids 1/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.