Skip to main content
Erschienen in: Experiments in Fluids 11/2013

01.11.2013 | Research Article

Three-dimensional structure of the flow inside the left ventricle of the human heart

verfasst von: S. Fortini, G. Querzoli, S. Espa, A. Cenedese

Erschienen in: Experiments in Fluids | Ausgabe 11/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The laboratory models of the human heart left ventricle developed in the last decades gave a valuable contribution to the comprehension of the role of the fluid dynamics in the cardiac function and to support the interpretation of the data obtained in vivo. Nevertheless, some questions are still opened and new ones stem from the continuous improvements in the diagnostic imaging techniques. Many of these unresolved issues are related to the three-dimensional structure of the left ventricular flow during the cardiac cycle. In this paper, we investigated in detail this aspect using a laboratory model. The ventricle was simulated by a flexible sack varying its volume in time according to a physiologically shaped law. Velocities measured during several cycles on series of parallel planes, taken from two orthogonal points of view, were combined together in order to reconstruct the phase-averaged, three-dimensional velocity field. During the diastole, three main steps are recognized in the evolution of the vortical structures: (1) straight propagation in the direction of the long axis of a vortex ring originated from the mitral orifice; (2) asymmetric development of the vortex ring on an inclined plane; and (3) single vortex formation. The analysis of three-dimensional data gives the experimental evidence of the reorganization of the flow in a single vortex persisting until the end of the diastole. This flow pattern seems to optimize the cardiac function since it directs velocity towards the aortic valve just before the systole and minimizes the fraction of blood residing within the ventricle for more cycles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akutsu T, Imai R, Deguchi Y (2005) Effect of the flow field of mechanical bileaflet mitral prostheses on valve closing. J Artif Organs 8(3):161–170CrossRef Akutsu T, Imai R, Deguchi Y (2005) Effect of the flow field of mechanical bileaflet mitral prostheses on valve closing. J Artif Organs 8(3):161–170CrossRef
Zurück zum Zitat Alemu Y, Bluestein D (2007) Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif Organs 31(9):677–688CrossRef Alemu Y, Bluestein D (2007) Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif Organs 31(9):677–688CrossRef
Zurück zum Zitat Baccani B, Domenichini F, Pedrizzetti G, Tonti G (2002) Fluid dynamics of the left ventricular filling in dilated cardiomyopathy. J Biomech 35(5):665–671CrossRef Baccani B, Domenichini F, Pedrizzetti G, Tonti G (2002) Fluid dynamics of the left ventricular filling in dilated cardiomyopathy. J Biomech 35(5):665–671CrossRef
Zurück zum Zitat Balducci A, Grigioni M, Querzoli G, Romano GP, Daniele C, D’Avenio G, Barbaro V (2004) Investigation of the flow field downstream of an artificial heart valve by means of PIV and PTV. Exp Fluids 36(1):204–213CrossRef Balducci A, Grigioni M, Querzoli G, Romano GP, Daniele C, D’Avenio G, Barbaro V (2004) Investigation of the flow field downstream of an artificial heart valve by means of PIV and PTV. Exp Fluids 36(1):204–213CrossRef
Zurück zum Zitat Belohlavek M (2012) Vortex formation time: an emerging echocardiographic index of left ventricular filling efficiency? Eur Heart J Cardiovasc Imaging 13(5):367–369CrossRef Belohlavek M (2012) Vortex formation time: an emerging echocardiographic index of left ventricular filling efficiency? Eur Heart J Cardiovasc Imaging 13(5):367–369CrossRef
Zurück zum Zitat Benenstein R, Saric M (2012) Mitral valve prolapse: role of 3D echocardiography in diagnosis. Curr Opin Cardiol 27(5):465–476 Benenstein R, Saric M (2012) Mitral valve prolapse: role of 3D echocardiography in diagnosis. Curr Opin Cardiol 27(5):465–476
Zurück zum Zitat Brucker C, Steinseifer U, Schroder W, Reul H (2002) Unsteady flow through a new mechanical heart valve prosthesis analysed by digital particle image velocimetry. Meas Sci Technol 13:1043–1049CrossRef Brucker C, Steinseifer U, Schroder W, Reul H (2002) Unsteady flow through a new mechanical heart valve prosthesis analysed by digital particle image velocimetry. Meas Sci Technol 13:1043–1049CrossRef
Zurück zum Zitat Cenedese A, Mele P (1978) Analisi sperimentale degli sforzi di Reynolds mediante anemometria laser. L’Energia Elettrica 2:53–58 Cenedese A, Mele P (1978) Analisi sperimentale degli sforzi di Reynolds mediante anemometria laser. L’Energia Elettrica 2:53–58
Zurück zum Zitat Cenedese A, Del Prete Z, Miozzi M, Querzoli G (2005) A laboratory investigation of the flow in the left ventricle of the human heart with prosthetic, tilting-disk valves. Exp Fluids 39(2):322–335CrossRef Cenedese A, Del Prete Z, Miozzi M, Querzoli G (2005) A laboratory investigation of the flow in the left ventricle of the human heart with prosthetic, tilting-disk valves. Exp Fluids 39(2):322–335CrossRef
Zurück zum Zitat Cooke J, Hertzberg J, Boardman M, Shandas R (2004) Characterizing vortex ring behaviour during ventricular filling with Doppler echocardiography: an in vitro study. Ann Biomed Eng 32(2):245–256CrossRef Cooke J, Hertzberg J, Boardman M, Shandas R (2004) Characterizing vortex ring behaviour during ventricular filling with Doppler echocardiography: an in vitro study. Ann Biomed Eng 32(2):245–256CrossRef
Zurück zum Zitat Coon PD, Pollard H, Furlong K, Lang RM, Mor-Avi V (2012) Quantification of left ventricular size and function using contrast-enhanced real-time 3D imaging with power modulation: comparison with cardiac MRI. Ultrasound Med Biol 38(11):1853–1858CrossRef Coon PD, Pollard H, Furlong K, Lang RM, Mor-Avi V (2012) Quantification of left ventricular size and function using contrast-enhanced real-time 3D imaging with power modulation: comparison with cardiac MRI. Ultrasound Med Biol 38(11):1853–1858CrossRef
Zurück zum Zitat Dabiri JO (2009) Optimal vortex formation as a unifying principle in biological propulsion. Ann Rev Fluid Mech 41:17–33MathSciNetCrossRef Dabiri JO (2009) Optimal vortex formation as a unifying principle in biological propulsion. Ann Rev Fluid Mech 41:17–33MathSciNetCrossRef
Zurück zum Zitat Dabiri JO, Gharib M (2004) Fluid entrainment by isolated vortex rings. J Fluid Mech 511:311–331 Dabiri JO, Gharib M (2004) Fluid entrainment by isolated vortex rings. J Fluid Mech 511:311–331
Zurück zum Zitat Doenst T, Spiegel K, Reik M, Markl M, Hennig J, Nitzsche S, Beyersdorf F, Oertel H (2009) Fluid-dynamic modeling of the human left ventricle: methodology and application to surgical ventricular reconstruction. Ann Thorac Surg 87:1187–1195CrossRef Doenst T, Spiegel K, Reik M, Markl M, Hennig J, Nitzsche S, Beyersdorf F, Oertel H (2009) Fluid-dynamic modeling of the human left ventricle: methodology and application to surgical ventricular reconstruction. Ann Thorac Surg 87:1187–1195CrossRef
Zurück zum Zitat Domenichini F, Pedrizzetti G, Baccani B (2005) Three-dimensional filling flow into a model left ventricle. J Fluid Mech 539:179–198MathSciNetCrossRefMATH Domenichini F, Pedrizzetti G, Baccani B (2005) Three-dimensional filling flow into a model left ventricle. J Fluid Mech 539:179–198MathSciNetCrossRefMATH
Zurück zum Zitat Eriksson J, Carlhäll CJ, Dyverfeldt P, Engvall J, Bolger AF, Ebbers T (2010) Semi-automatic quantification of 4D left ventricular blood flow. J Cardiovasc Magn Reson 12(1):9CrossRef Eriksson J, Carlhäll CJ, Dyverfeldt P, Engvall J, Bolger AF, Ebbers T (2010) Semi-automatic quantification of 4D left ventricular blood flow. J Cardiovasc Magn Reson 12(1):9CrossRef
Zurück zum Zitat Espa S, Bada MG, Fortini S, Querzoli G, Cenedese A (2012) A Lagrangian investigation of the flow inside the left ventricle. Eur J Mech B Fluids 35:9–19CrossRef Espa S, Bada MG, Fortini S, Querzoli G, Cenedese A (2012) A Lagrangian investigation of the flow inside the left ventricle. Eur J Mech B Fluids 35:9–19CrossRef
Zurück zum Zitat Grigioni M, Daniele C, D’Avenio G, Barbaro V (2002) Evaluation of the surface-averaged load exerted on a blood element by the Reynolds shear stress field provided by artificial cardiovascular devices. J Biomech 35:1613–1622CrossRef Grigioni M, Daniele C, D’Avenio G, Barbaro V (2002) Evaluation of the surface-averaged load exerted on a blood element by the Reynolds shear stress field provided by artificial cardiovascular devices. J Biomech 35:1613–1622CrossRef
Zurück zum Zitat Haugen BO, Berg S, Brecke KM, Samstad SO, Slørdahl SA, Skjærpe T, Torp H (2000) Velocity profiles in mitral blood flow based on three-dimensional freehand colour flow imaging acquired at high frame rate. Eur J Echocardiogr 1(4):252–256CrossRef Haugen BO, Berg S, Brecke KM, Samstad SO, Slørdahl SA, Skjærpe T, Torp H (2000) Velocity profiles in mitral blood flow based on three-dimensional freehand colour flow imaging acquired at high frame rate. Eur J Echocardiogr 1(4):252–256CrossRef
Zurück zum Zitat Ismeno G, Renzulli A, Carozza A, De Feo M, Iannuzzi M, Sante P, Cotrufo M (1999) Intravascular hemolysis after mitral and aortic valve replacement with different types of mechanical prostheses. Int J Cardiol 69(2):179–183CrossRef Ismeno G, Renzulli A, Carozza A, De Feo M, Iannuzzi M, Sante P, Cotrufo M (1999) Intravascular hemolysis after mitral and aortic valve replacement with different types of mechanical prostheses. Int J Cardiol 69(2):179–183CrossRef
Zurück zum Zitat Kilner PJ, Yang GZ, Wilkes AJ, Mohladin RH, Firmin DN, Yacoub MH (2000) Asymmetric redirection of flow through the heart. Nature 404(6779):759–761CrossRef Kilner PJ, Yang GZ, Wilkes AJ, Mohladin RH, Firmin DN, Yacoub MH (2000) Asymmetric redirection of flow through the heart. Nature 404(6779):759–761CrossRef
Zurück zum Zitat Lemmon JD, Yoganathan AP (2000) Computational modeling of left heart diastolic function: examination of ventricular dysfunction. J Biomech Eng 122(4):297–303CrossRef Lemmon JD, Yoganathan AP (2000) Computational modeling of left heart diastolic function: examination of ventricular dysfunction. J Biomech Eng 122(4):297–303CrossRef
Zurück zum Zitat Mandinov L, Eberli FR, Seiler C, Hess OM (2000) Diastolic heart failure. Cardiovasc Res 45(4):813–825CrossRef Mandinov L, Eberli FR, Seiler C, Hess OM (2000) Diastolic heart failure. Cardiovasc Res 45(4):813–825CrossRef
Zurück zum Zitat Miozzi M, Jaacob B, Olivieri A (2008) Performances of feature tracking in turbulent boundary layer investigation. Exp Fluids 45:765–780CrossRef Miozzi M, Jaacob B, Olivieri A (2008) Performances of feature tracking in turbulent boundary layer investigation. Exp Fluids 45:765–780CrossRef
Zurück zum Zitat Nobili M, Sheriff J, Morbiducci U, Redaelli A, Bluestein D (2008) Platelet activation due to hemodynamic shear stresses: damage accumulation model and comparison to in vitro measurements. ASAJO J 54(1):64–72CrossRef Nobili M, Sheriff J, Morbiducci U, Redaelli A, Bluestein D (2008) Platelet activation due to hemodynamic shear stresses: damage accumulation model and comparison to in vitro measurements. ASAJO J 54(1):64–72CrossRef
Zurück zum Zitat Pedrizzetti G, Domenichini F (2005) Nature optimizes the swirling flow in the human left ventricle. Phys Rev Lett 95(10):108101CrossRef Pedrizzetti G, Domenichini F (2005) Nature optimizes the swirling flow in the human left ventricle. Phys Rev Lett 95(10):108101CrossRef
Zurück zum Zitat Pierrakos O, Vlachos PP, Telionis DP (2005) Time-Resolved DPIV analysis of vortex dynamics in a left ventricular model through bileaflet mechanical and porcine heart valve prostheses. J Biomech Eng 126(6):714–726CrossRef Pierrakos O, Vlachos PP, Telionis DP (2005) Time-Resolved DPIV analysis of vortex dynamics in a left ventricular model through bileaflet mechanical and porcine heart valve prostheses. J Biomech Eng 126(6):714–726CrossRef
Zurück zum Zitat Poelma C, van der Mijle RME, Mari JM, Tang M-X, Weinberg PD, Westerweel J (2011) Ultrasound imaging velocimetry: toward reliable wall shear stress measurements. Eur J Mech B Fluids 35:70–75CrossRef Poelma C, van der Mijle RME, Mari JM, Tang M-X, Weinberg PD, Westerweel J (2011) Ultrasound imaging velocimetry: toward reliable wall shear stress measurements. Eur J Mech B Fluids 35:70–75CrossRef
Zurück zum Zitat Querzoli G, Fortini S, Cenedese A (2010) Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow. Phys Fluids 22(4):041901–041910CrossRef Querzoli G, Fortini S, Cenedese A (2010) Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow. Phys Fluids 22(4):041901–041910CrossRef
Zurück zum Zitat Reul H, Talukder N, Muller W (1981) Fluid mechanics of the natural mitral valve. J Biomech 14(5):361–372CrossRef Reul H, Talukder N, Muller W (1981) Fluid mechanics of the natural mitral valve. J Biomech 14(5):361–372CrossRef
Zurück zum Zitat Romano GP, Querzoli G, Falchi M (2009) Investigation of vortex dynamics downstream of moving leaflets using robust image velocimetry. Exp Fluids 47:827–838CrossRef Romano GP, Querzoli G, Falchi M (2009) Investigation of vortex dynamics downstream of moving leaflets using robust image velocimetry. Exp Fluids 47:827–838CrossRef
Zurück zum Zitat Saber NR, Gosman AD, Wood NB, Kilner PJ, Charrier CL, Firmin DN (2001) Computational flow modeling of the left ventricle based on in vivo MRI data: initial experience. Ann Biomed Eng 29(4):275–283CrossRef Saber NR, Gosman AD, Wood NB, Kilner PJ, Charrier CL, Firmin DN (2001) Computational flow modeling of the left ventricle based on in vivo MRI data: initial experience. Ann Biomed Eng 29(4):275–283CrossRef
Zurück zum Zitat Schenkel T, Malve M, Reik M, Markl M, Jung B, Oertel H (2009) MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart. Ann Biomed Eng 37(3):503–515CrossRef Schenkel T, Malve M, Reik M, Markl M, Jung B, Oertel H (2009) MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart. Ann Biomed Eng 37(3):503–515CrossRef
Zurück zum Zitat Sengupta PP, Pedrizzetti G, Kilner PJ, Kheradvar A, Ebbers T, Tonti G, Fraser AG, Narula J (2012) Emerging trends in CV flow visualization. JACC Cardiovasc Imaging 5(3):305–316CrossRef Sengupta PP, Pedrizzetti G, Kilner PJ, Kheradvar A, Ebbers T, Tonti G, Fraser AG, Narula J (2012) Emerging trends in CV flow visualization. JACC Cardiovasc Imaging 5(3):305–316CrossRef
Zurück zum Zitat Steen T, Steen S (1994) Filling of a model left ventricle studied by colour M mode Doppler. Cardiovasc Res 28(12):1821–1827CrossRef Steen T, Steen S (1994) Filling of a model left ventricle studied by colour M mode Doppler. Cardiovasc Res 28(12):1821–1827CrossRef
Zurück zum Zitat Töger J, Kansky M, Carlsson M, Kovács SJ, Söderlind G, Arheden H, Heiberg E (2012) Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and Lagrangian coherent structures. Ann Biomed Eng 40(12):2652–2662CrossRef Töger J, Kansky M, Carlsson M, Kovács SJ, Söderlind G, Arheden H, Heiberg E (2012) Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and Lagrangian coherent structures. Ann Biomed Eng 40(12):2652–2662CrossRef
Zurück zum Zitat Vasan RS, Levy D (2000) Defining diastolic heart failure. Circulation 101:2118–2121CrossRef Vasan RS, Levy D (2000) Defining diastolic heart failure. Circulation 101:2118–2121CrossRef
Zurück zum Zitat Verzicco R, Orlandi P (1994) Normal and oblique collisions of a vortex ring with wall. Meccanica 29:383–391CrossRefMATH Verzicco R, Orlandi P (1994) Normal and oblique collisions of a vortex ring with wall. Meccanica 29:383–391CrossRefMATH
Zurück zum Zitat Vierendeels JA, Dick E, Verdonck PR (2002) Hydrodynamics of color M-mode Doppler flow wave propagation velocity V(p): a computer study. J Am Soc Echocardiogr 15(3):219–224CrossRef Vierendeels JA, Dick E, Verdonck PR (2002) Hydrodynamics of color M-mode Doppler flow wave propagation velocity V(p): a computer study. J Am Soc Echocardiogr 15(3):219–224CrossRef
Zurück zum Zitat Vukicevic M, Fortini S, Querzoli G, Espa S, Pedrizzetti G (2012) Experimental study of the asymmetric heart valve prototype. Eur J Mech B Fluids 35:54–60CrossRef Vukicevic M, Fortini S, Querzoli G, Espa S, Pedrizzetti G (2012) Experimental study of the asymmetric heart valve prototype. Eur J Mech B Fluids 35:54–60CrossRef
Zurück zum Zitat Wieting DW, Stripling TE (1984) Dynamics and fluid dynamics of the mitral valve. In: Duran C, Angell WW, Johnson AD, Oury JH (eds) Recent progress in mitral valve disease. Butterworths Publishers, London, pp 13–46CrossRef Wieting DW, Stripling TE (1984) Dynamics and fluid dynamics of the mitral valve. In: Duran C, Angell WW, Johnson AD, Oury JH (eds) Recent progress in mitral valve disease. Butterworths Publishers, London, pp 13–46CrossRef
Zurück zum Zitat Wigström L, Ebbers T, Fyrenius A, Karlsson M, Engvall J, Wranne B, Bolger AF (1999) Particle trace visualization of intracardiac flow using time-resolved 3D phase contrast MRI. Magn Reson Med 41(4):793–799CrossRef Wigström L, Ebbers T, Fyrenius A, Karlsson M, Engvall J, Wranne B, Bolger AF (1999) Particle trace visualization of intracardiac flow using time-resolved 3D phase contrast MRI. Magn Reson Med 41(4):793–799CrossRef
Metadaten
Titel
Three-dimensional structure of the flow inside the left ventricle of the human heart
verfasst von
S. Fortini
G. Querzoli
S. Espa
A. Cenedese
Publikationsdatum
01.11.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 11/2013
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-013-1609-0

Weitere Artikel der Ausgabe 11/2013

Experiments in Fluids 11/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.