Skip to main content
Erschienen in: Experiments in Fluids 12/2013

01.12.2013 | Research Article

Scalar gradient trajectory measurements using high-frequency cinematographic planar Rayleigh scattering

verfasst von: Markus Gampert, Venkat Narayanaswamy, Norbert Peters

Erschienen in: Experiments in Fluids | Ausgabe 12/2013

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we perform an experimental investigation into statistics based on scalar gradient trajectories in a turbulent jet flow, which have been suggested as an alternative means to analyze turbulent flow fields by Wang and Peters (J Fluid Mech 554:457–475, 2006, 608:113–138, 2008). Although there are several numerical simulations and theoretical works that investigate the statistics along gradient trajectories, only few experiments in this area have been reported. To this end, high-frequency cinematographic planar Rayleigh scattering imaging is performed at different axial locations of a turbulent propane jet issuing into a CO2 coflow at nozzle-based Reynolds numbers Re 0 = 3,000–8,600. Taylor’s hypothesis is invoked to obtain a three-dimensional reconstruction of the scalar field in which then the corresponding scalar gradient trajectories can be computed. These are then used to examine the local structure of the mixture fraction with a focus on the scalar turbulent/non-turbulent interface. The latter is a layer that is located between the fully turbulent part of the jet and the outer flow. Using scalar gradient trajectories, we partition the turbulent scalar field into these three regions according to an approach developed by Mellado et al. (J Fluid Mech 626:333–365, 2009). Based on the latter, we investigate the probability to find the respective regions as a function of the radial distance to the centerline, which turns out to reveal the meandering nature of the scalar T/NT interface layer as well as its impact on the local structure of the turbulent scalar field.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Amielh M, Djeridane T, Anselmet F, Fulachier L (1996) Velocity near-field of variable density turbulent jets. Int J Heat Mass Transfer 39(10):2149–2164CrossRef Amielh M, Djeridane T, Anselmet F, Fulachier L (1996) Velocity near-field of variable density turbulent jets. Int J Heat Mass Transfer 39(10):2149–2164CrossRef
Zurück zum Zitat Anselmet F, Antonia RA (1985) Joint statistics between temperature and its dissipation in a turbulent jet. Phys Fluids 28:1048CrossRef Anselmet F, Antonia RA (1985) Joint statistics between temperature and its dissipation in a turbulent jet. Phys Fluids 28:1048CrossRef
Zurück zum Zitat Antonia RA, Sreenivasan KR (1977) Log-normality of temperature dissipation in a turbulent boundary layer. Phys Fluids 20:1800–1804CrossRef Antonia RA, Sreenivasan KR (1977) Log-normality of temperature dissipation in a turbulent boundary layer. Phys Fluids 20:1800–1804CrossRef
Zurück zum Zitat Antonia RA, Hopfinger E, Gagne Y, Anselmet F (1984) Temperature structure functions in turbulent shear flows. Phys Rev A 30:2704–2707CrossRef Antonia RA, Hopfinger E, Gagne Y, Anselmet F (1984) Temperature structure functions in turbulent shear flows. Phys Rev A 30:2704–2707CrossRef
Zurück zum Zitat Becker H, Hottel H, Williams G (1967) The nozzle-fluid concentration field of the round, turbulent, free jet. J Fluid Mech 30:285–301CrossRef Becker H, Hottel H, Williams G (1967) The nozzle-fluid concentration field of the round, turbulent, free jet. J Fluid Mech 30:285–301CrossRef
Zurück zum Zitat Birch A, Brown D, Dodson M, Thomas J (1978) Turbulent concentration field of a methane jet. J Fluid Mech 88:431–449CrossRef Birch A, Brown D, Dodson M, Thomas J (1978) Turbulent concentration field of a methane jet. J Fluid Mech 88:431–449CrossRef
Zurück zum Zitat Buch KA, Dahm WJ (1996) Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. J Fluid Mech 317:21–71CrossRef Buch KA, Dahm WJ (1996) Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. J Fluid Mech 317:21–71CrossRef
Zurück zum Zitat Buch KA, Dahm WJ (1998) Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. J Fluid Mech 364:1–29CrossRefMATH Buch KA, Dahm WJ (1998) Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. J Fluid Mech 364:1–29CrossRefMATH
Zurück zum Zitat Corrsin S, Kistler AL (1955) Free-stream boundaries of turbulent flows. NACA Report 1244 Corrsin S, Kistler AL (1955) Free-stream boundaries of turbulent flows. NACA Report 1244
Zurück zum Zitat da Silva CB, Pereira JC (2008) Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys Fluids 20:055,101CrossRef da Silva CB, Pereira JC (2008) Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys Fluids 20:055,101CrossRef
Zurück zum Zitat da Silva CB, Pereira JC (2011) The role of coherent vortices near the turbulent/non-turbulent interface in a planar jet. Phil Trans R Soc A 369:738–753CrossRefMATH da Silva CB, Pereira JC (2011) The role of coherent vortices near the turbulent/non-turbulent interface in a planar jet. Phil Trans R Soc A 369:738–753CrossRefMATH
Zurück zum Zitat da Silva CB, Taveira RR (2010) The thickness of the turbulent/nonturbulent interface is equal to the radius of the large vorticity structures near the edge of the shear layer. Phys Fluids 22:121,702CrossRef da Silva CB, Taveira RR (2010) The thickness of the turbulent/nonturbulent interface is equal to the radius of the large vorticity structures near the edge of the shear layer. Phys Fluids 22:121,702CrossRef
Zurück zum Zitat Dahm WJ, Southerland KB, Buch KA (1991) Direct, high resolution, four-dimensional measurements of the fine scale structure of sc≫1 molecular mixing in turbulent flows. Phys Fluids A: Fluid Dyn 3:1115CrossRef Dahm WJ, Southerland KB, Buch KA (1991) Direct, high resolution, four-dimensional measurements of the fine scale structure of sc≫1 molecular mixing in turbulent flows. Phys Fluids A: Fluid Dyn 3:1115CrossRef
Zurück zum Zitat Dahm WJA, Southerland KB (1997) Experimental assessment of Taylor’s hypothesis and its applicability to dissipation estimates in turbulent flows. Phys Fluids 9:2101–2107CrossRef Dahm WJA, Southerland KB (1997) Experimental assessment of Taylor’s hypothesis and its applicability to dissipation estimates in turbulent flows. Phys Fluids 9:2101–2107CrossRef
Zurück zum Zitat Dibble R, Hartmann V, Schefer R, Kollmann W (1987) Conditional sampling of velocity and scalars in turbulent flames using simultaneous LDV-Raman scattering. Exp Fluids 5(2):103–113CrossRef Dibble R, Hartmann V, Schefer R, Kollmann W (1987) Conditional sampling of velocity and scalars in turbulent flames using simultaneous LDV-Raman scattering. Exp Fluids 5(2):103–113CrossRef
Zurück zum Zitat Dowling DR, Dimotakis PE (1990) Similarity of the concentration field of gas-phase turbulent jets. J Fluid Mech 218:109–141CrossRef Dowling DR, Dimotakis PE (1990) Similarity of the concentration field of gas-phase turbulent jets. J Fluid Mech 218:109–141CrossRef
Zurück zum Zitat Eckbreth A (1996) Laser Diagnostics for Combustion Temperature and Species, 2nd edn. Informa Healthcare, Zug Eckbreth A (1996) Laser Diagnostics for Combustion Temperature and Species, 2nd edn. Informa Healthcare, Zug
Zurück zum Zitat Effelsberg E, Peters N (1983) A composite model for the conserved scalar pdf. Combust Flame 50:351–360CrossRef Effelsberg E, Peters N (1983) A composite model for the conserved scalar pdf. Combust Flame 50:351–360CrossRef
Zurück zum Zitat Everest DA, Feikema DA, Driscoll JF (1996) Images of the strained flammable layer used to study the liftoff of turbulent jet flames. In: Symposium (International) on Combustion, Elsevier, vol 26, pp 129–136 Everest DA, Feikema DA, Driscoll JF (1996) Images of the strained flammable layer used to study the liftoff of turbulent jet flames. In: Symposium (International) on Combustion, Elsevier, vol 26, pp 129–136
Zurück zum Zitat Feikema DA, Everest D, Driscoll JF (1996) Images of dissipation layers to quantify mixing within a turbulent jet. AIAA J 34(12):2531–2538CrossRef Feikema DA, Everest D, Driscoll JF (1996) Images of dissipation layers to quantify mixing within a turbulent jet. AIAA J 34(12):2531–2538CrossRef
Zurück zum Zitat Frank JH, Kaiser SA (2010) High-resolution imaging of turbulence structures in jet flames and non-reacting jets with laser Rayleigh scattering. Exp Fluids 49(4):823–837CrossRef Frank JH, Kaiser SA (2010) High-resolution imaging of turbulence structures in jet flames and non-reacting jets with laser Rayleigh scattering. Exp Fluids 49(4):823–837CrossRef
Zurück zum Zitat Friehe CA, Van Atta CW, Gibson CH (1971) Jet turbulence dissipation rate measurements and correlations. AGARD Turbulent Shear Flows CP-93:18.1–18.7 Friehe CA, Van Atta CW, Gibson CH (1971) Jet turbulence dissipation rate measurements and correlations. AGARD Turbulent Shear Flows CP-93:18.1–18.7
Zurück zum Zitat Gamba M, Clemens N (2011) Requirements, capabilities and accuracy of time-resolved piv in turbulent reacting flows. AIAA paper 2011-362 Gamba M, Clemens N (2011) Requirements, capabilities and accuracy of time-resolved piv in turbulent reacting flows. AIAA paper 2011-362
Zurück zum Zitat Gampert M, Goebbert JH, Schaefer P, Gauding M, Peters N, Aldudak F, Oberlack M (2011) Extensive strain along gradient trajectories in the turbulent kinetic energy field. New J Phys 13:043,012CrossRef Gampert M, Goebbert JH, Schaefer P, Gauding M, Peters N, Aldudak F, Oberlack M (2011) Extensive strain along gradient trajectories in the turbulent kinetic energy field. New J Phys 13:043,012CrossRef
Zurück zum Zitat Gampert M, Narayanaswamy V, Schaefer P, Peters N (2013a) Conditional statistics of the turbulent/non-turbulent interface in a jet flow. J Fluid Mech 731:615–638CrossRef Gampert M, Narayanaswamy V, Schaefer P, Peters N (2013a) Conditional statistics of the turbulent/non-turbulent interface in a jet flow. J Fluid Mech 731:615–638CrossRef
Zurück zum Zitat Gampert M, Schaefer P, Goebbert J, Peters N (2013b) Decomposition of the field of the turbulent kinetic energy into regions of compressive and extensive strain. Phys Scripta 2013(T155):014002CrossRef Gampert M, Schaefer P, Goebbert J, Peters N (2013b) Decomposition of the field of the turbulent kinetic energy into regions of compressive and extensive strain. Phys Scripta 2013(T155):014002CrossRef
Zurück zum Zitat Gampert M, Schaefer P, Peters N (2013c) Experimental investigation of dissipation element statistics in scalar fields of a jet flow. J Fluid Mech 724:337–366CrossRef Gampert M, Schaefer P, Peters N (2013c) Experimental investigation of dissipation element statistics in scalar fields of a jet flow. J Fluid Mech 724:337–366CrossRef
Zurück zum Zitat Gampert M, Schaefer P, Peters N (2013d) Gradient trajectory analysis in a jet flow for turbulent combustion modelling. J Turbulence 14:147–164CrossRef Gampert M, Schaefer P, Peters N (2013d) Gradient trajectory analysis in a jet flow for turbulent combustion modelling. J Turbulence 14:147–164CrossRef
Zurück zum Zitat Gampert M, Kleinheinz K, Peters N, Pitsch H (2013e) Experimental and numerical study of the scalar turbulent/non-turbulent interface layer in a jet flow. Flow Turbulence Combust 1–21 Gampert M, Kleinheinz K, Peters N, Pitsch H (2013e) Experimental and numerical study of the scalar turbulent/non-turbulent interface layer in a jet flow. Flow Turbulence Combust 1–21
Zurück zum Zitat Ganapathisubramani B, Lakshminarasimhan K, Clemens NT (2007) Determination of complete velocity gradient tensor using cinematographic stereoscopic particle image velocimetry in the far field of a turbulent jet. Exp Fluids 42:923–939CrossRef Ganapathisubramani B, Lakshminarasimhan K, Clemens NT (2007) Determination of complete velocity gradient tensor using cinematographic stereoscopic particle image velocimetry in the far field of a turbulent jet. Exp Fluids 42:923–939CrossRef
Zurück zum Zitat Ganapathisubramani B, Lakshminarasimhan K, Clemens NT (2008) Investigation of three-dimensional structure of fine scales in a turbulent jet by using cinematographic stereoscopic particle image velocimetry. J Fluid Mech 598:141–175CrossRefMATH Ganapathisubramani B, Lakshminarasimhan K, Clemens NT (2008) Investigation of three-dimensional structure of fine scales in a turbulent jet by using cinematographic stereoscopic particle image velocimetry. J Fluid Mech 598:141–175CrossRefMATH
Zurück zum Zitat Ganapathisubramani B, Lakshminarasimhan K, Buxton ORH, Laizet S (2011a) The effects of resolution and noise on kinematic features of fine-scale turbulence. Exp Fluids 51:1417–1437CrossRef Ganapathisubramani B, Lakshminarasimhan K, Buxton ORH, Laizet S (2011a) The effects of resolution and noise on kinematic features of fine-scale turbulence. Exp Fluids 51:1417–1437CrossRef
Zurück zum Zitat Ganapathisubramani B, Lakshminarasimhan K, Buxton ORH, Laizet S (2011b) The interaction between strain-rate and rotation in shear flow turbulence from inertial range to dissipative length scales. Phys Fluids 23:061,704CrossRef Ganapathisubramani B, Lakshminarasimhan K, Buxton ORH, Laizet S (2011b) The interaction between strain-rate and rotation in shear flow turbulence from inertial range to dissipative length scales. Phys Fluids 23:061,704CrossRef
Zurück zum Zitat Hearst R, Buxton O, Ganapathisubramani B, Lavoie P (2012) Experimental estimation of fluctuating velocity and scalar gradients in turbulence. Exp Fluids 53:925–942CrossRef Hearst R, Buxton O, Ganapathisubramani B, Lavoie P (2012) Experimental estimation of fluctuating velocity and scalar gradients in turbulence. Exp Fluids 53:925–942CrossRef
Zurück zum Zitat Holzner M, Liberzon A, Nikitin N, Kinzelbach W, Tsinober A (2007a) Small-scale aspects of flows in proximity of the turbulent/non-turbulent interface. Phys Fluids 19(7):071,702CrossRef Holzner M, Liberzon A, Nikitin N, Kinzelbach W, Tsinober A (2007a) Small-scale aspects of flows in proximity of the turbulent/non-turbulent interface. Phys Fluids 19(7):071,702CrossRef
Zurück zum Zitat Holzner M, Luethi B, Tsinober A, Kinzelbach W (2007b) Acceleration, pressure and related quantities in the proximity of the turbulent/non-turbulent interface. J Fluid Mech 639:153–165CrossRef Holzner M, Luethi B, Tsinober A, Kinzelbach W (2007b) Acceleration, pressure and related quantities in the proximity of the turbulent/non-turbulent interface. J Fluid Mech 639:153–165CrossRef
Zurück zum Zitat Kholmyansky M, Tsinober A (2009) On an alternative explanation of anomalous scaling and how well-defined is the concept of inertial range. Phys Lett A 373:2364–2367CrossRefMATH Kholmyansky M, Tsinober A (2009) On an alternative explanation of anomalous scaling and how well-defined is the concept of inertial range. Phys Lett A 373:2364–2367CrossRefMATH
Zurück zum Zitat Lockwood F, Moneib H (1980) Fluctuating temperature measurements in a heated round free jet. Comb Sci Tech 22:63–71CrossRef Lockwood F, Moneib H (1980) Fluctuating temperature measurements in a heated round free jet. Comb Sci Tech 22:63–71CrossRef
Zurück zum Zitat Lubbers C, Brethouwer G, Boersma B (2001) Simulation of the mixing of a passive scalar in a round turbulent jet. Fluid Dyn Res 28(3):189–208MathSciNetCrossRefMATH Lubbers C, Brethouwer G, Boersma B (2001) Simulation of the mixing of a passive scalar in a round turbulent jet. Fluid Dyn Res 28(3):189–208MathSciNetCrossRefMATH
Zurück zum Zitat Mellado JP, Wang L, Peters N (2009) Gradient trajectory analysis of a scalar field with internal intermittency. J Fluid Mech 626:333–365CrossRefMATH Mellado JP, Wang L, Peters N (2009) Gradient trajectory analysis of a scalar field with internal intermittency. J Fluid Mech 626:333–365CrossRefMATH
Zurück zum Zitat Mydlarski L, Warhaft Z (1998) Passive scalar statistics in high-Péclet-number grid turbulence. J Fluid Mech 358:135–175CrossRef Mydlarski L, Warhaft Z (1998) Passive scalar statistics in high-Péclet-number grid turbulence. J Fluid Mech 358:135–175CrossRef
Zurück zum Zitat Panchapakesan N, Lumley J (1993) Turbulence measurements in axisymmetric jets of air and helium. part 1. air jet. J Fluid Mech 246:197–223CrossRef Panchapakesan N, Lumley J (1993) Turbulence measurements in axisymmetric jets of air and helium. part 1. air jet. J Fluid Mech 246:197–223CrossRef
Zurück zum Zitat Patton R, Gabet K, Jiang N, Lempert W, Sutton J (2012) Multi-khz mixture fraction imaging in turbulent jets using planar Rayleigh scattering. Appl Phys B 106:457–471CrossRef Patton R, Gabet K, Jiang N, Lempert W, Sutton J (2012) Multi-khz mixture fraction imaging in turbulent jets using planar Rayleigh scattering. Appl Phys B 106:457–471CrossRef
Zurück zum Zitat Peters N (2009) Multiscale combustion and turbulence. 32nd Symposium on Combustion, Montreal 2008, Proc Combust Inst 32:1–25 Peters N (2009) Multiscale combustion and turbulence. 32nd Symposium on Combustion, Montreal 2008, Proc Combust Inst 32:1–25
Zurück zum Zitat Philip J, Marusic I (2012) Large-scale eddies and their role in entrainment in turbulent jets and wakes. Phys Fluids 24(5):055,108CrossRef Philip J, Marusic I (2012) Large-scale eddies and their role in entrainment in turbulent jets and wakes. Phys Fluids 24(5):055,108CrossRef
Zurück zum Zitat Prasad RR, Sreenivasan KR (1989) Scalar interfaces in digital images of turbulent flows. Exp Fluids 7:259–264CrossRef Prasad RR, Sreenivasan KR (1989) Scalar interfaces in digital images of turbulent flows. Exp Fluids 7:259–264CrossRef
Zurück zum Zitat Richards CD, Pitts WM (1993) Global density effects on the self-preservation behaviour of turbulent free jets. J Fluid Mech 254:417–435CrossRef Richards CD, Pitts WM (1993) Global density effects on the self-preservation behaviour of turbulent free jets. J Fluid Mech 254:417–435CrossRef
Zurück zum Zitat Schaefer L, Dierksheide U, Klaas M, Schroeder W (2010a) Investigation of dissipation elements in a fully developed turbulent channel flow by tomographic particle-image velocimetry. Phys Fluids 23:035,106CrossRef Schaefer L, Dierksheide U, Klaas M, Schroeder W (2010a) Investigation of dissipation elements in a fully developed turbulent channel flow by tomographic particle-image velocimetry. Phys Fluids 23:035,106CrossRef
Zurück zum Zitat Schaefer P, Gampert M, Goebbert JH, Wang L, Peters N (2010b) Testing of different model equations for the mean dissipation using Kolmogorov flows. Flow Turb Comb 85:225–243CrossRefMATH Schaefer P, Gampert M, Goebbert JH, Wang L, Peters N (2010b) Testing of different model equations for the mean dissipation using Kolmogorov flows. Flow Turb Comb 85:225–243CrossRefMATH
Zurück zum Zitat Schaefer P, Gampert M, Gauding M, Peters N, Treviño C (2011) The secondary splitting of zero-gradient points in a scalar field. J Eng Math 71(1):81–95CrossRefMATH Schaefer P, Gampert M, Gauding M, Peters N, Treviño C (2011) The secondary splitting of zero-gradient points in a scalar field. J Eng Math 71(1):81–95CrossRefMATH
Zurück zum Zitat Schaefer P, Gampert M, Peters N (2012) The length distribution of streamline segments in homogeneous isotropic decaying turbulence. Phys Fluids 24:045,104CrossRef Schaefer P, Gampert M, Peters N (2012) The length distribution of streamline segments in homogeneous isotropic decaying turbulence. Phys Fluids 24:045,104CrossRef
Zurück zum Zitat Schaefer P, Gampert M, Peters N (2013a) Joint statistics and conditional mean strain rates of streamline segments. Phys Scripta 2013(T155):014004CrossRef Schaefer P, Gampert M, Peters N (2013a) Joint statistics and conditional mean strain rates of streamline segments. Phys Scripta 2013(T155):014004CrossRef
Zurück zum Zitat Schaefer P, Gampert M, Peters N (2013b) On the scaling of the mean length of streamline segments in various turbulent flows. C R Mec 340:859–866CrossRef Schaefer P, Gampert M, Peters N (2013b) On the scaling of the mean length of streamline segments in various turbulent flows. C R Mec 340:859–866CrossRef
Zurück zum Zitat Schefer R, Dibble R (1986) Rayleigh scattering measurements of mixture fraction in a turbulent nonreacting propane jet. AIAA J 23(7):1070–1078CrossRef Schefer R, Dibble R (1986) Rayleigh scattering measurements of mixture fraction in a turbulent nonreacting propane jet. AIAA J 23(7):1070–1078CrossRef
Zurück zum Zitat Soliman A, Mansour M, Peters N, Morsy M (2012) Dissipation element analysis of scalar field in turbulent jet flow. Exp Thermal Fluid Sci 37:57–64CrossRef Soliman A, Mansour M, Peters N, Morsy M (2012) Dissipation element analysis of scalar field in turbulent jet flow. Exp Thermal Fluid Sci 37:57–64CrossRef
Zurück zum Zitat Su LK, Clemens NT (1999) Planar measurements of the full three-dimensional scalar dissipation rate in gas-phase turbulent flows. Exp Fluids 27:507–521CrossRef Su LK, Clemens NT (1999) Planar measurements of the full three-dimensional scalar dissipation rate in gas-phase turbulent flows. Exp Fluids 27:507–521CrossRef
Zurück zum Zitat Su LK, Clemens NT (2003) The structure of fine-scale scalar mixing in gas-phase planar turbulent jets. J Fluid Mech 488:1–29CrossRefMATH Su LK, Clemens NT (2003) The structure of fine-scale scalar mixing in gas-phase planar turbulent jets. J Fluid Mech 488:1–29CrossRefMATH
Zurück zum Zitat Talbot B, Mazellier N, Renou B, Danaila L, Boukhalfa M (2009) Time-resolved velocity and concentration measurements in variable-viscosity turbulent jet flow. Exp Fluids 47:769–787CrossRef Talbot B, Mazellier N, Renou B, Danaila L, Boukhalfa M (2009) Time-resolved velocity and concentration measurements in variable-viscosity turbulent jet flow. Exp Fluids 47:769–787CrossRef
Zurück zum Zitat Townsend AA (1948) Local isotropy in the turbulent wake of a cylinder. Aust J Sci Res A1:161–174 Townsend AA (1948) Local isotropy in the turbulent wake of a cylinder. Aust J Sci Res A1:161–174
Zurück zum Zitat Townsend AA (1949) The fully developed turbulent wake of a circular cylinder. Aust J Sci Res A2:451–468 Townsend AA (1949) The fully developed turbulent wake of a circular cylinder. Aust J Sci Res A2:451–468
Zurück zum Zitat Tropea C, Yarin A, Foss J (2007) Springer handbook of experimental fluid mechanics. Springer, BerlinCrossRef Tropea C, Yarin A, Foss J (2007) Springer handbook of experimental fluid mechanics. Springer, BerlinCrossRef
Zurück zum Zitat Tsinober A, Kit E, Dracos T (1992) Experimental investigation of the field of velocity gradients in turbulent flows. J Fluid Mech 242:169–192CrossRef Tsinober A, Kit E, Dracos T (1992) Experimental investigation of the field of velocity gradients in turbulent flows. J Fluid Mech 242:169–192CrossRef
Zurück zum Zitat Wang L (2008) Geometrical description of homogeneous shear turbulence using dissipation element analysis. PhD thesis, RWTH-Aachen, Germany Wang L (2008) Geometrical description of homogeneous shear turbulence using dissipation element analysis. PhD thesis, RWTH-Aachen, Germany
Zurück zum Zitat Wang L (2009) Scaling of the two-point velocity difference along scalar gradient trajectories in fluid turbulence. Phys Rev E 79:046,325CrossRef Wang L (2009) Scaling of the two-point velocity difference along scalar gradient trajectories in fluid turbulence. Phys Rev E 79:046,325CrossRef
Zurück zum Zitat Wang L, Peters N (2006) The length scale distribution function of the distance between extremal points in passive scalar turbulence. J Fluid Mech 554:457–475CrossRefMATH Wang L, Peters N (2006) The length scale distribution function of the distance between extremal points in passive scalar turbulence. J Fluid Mech 554:457–475CrossRefMATH
Zurück zum Zitat Wang L, Peters N (2008) Length scale distribution functions and conditional means for various fields in turbulence. J Fluid Mech 608:113–138MathSciNetCrossRefMATH Wang L, Peters N (2008) Length scale distribution functions and conditional means for various fields in turbulence. J Fluid Mech 608:113–138MathSciNetCrossRefMATH
Zurück zum Zitat Westerweel J, Hofmann T, Fukushima C, Hunt J (2002) The turbulent/non-turbulent interface at the outer boundary of a self-similar turbulent jet. Exp Fluids 33:873–878CrossRef Westerweel J, Hofmann T, Fukushima C, Hunt J (2002) The turbulent/non-turbulent interface at the outer boundary of a self-similar turbulent jet. Exp Fluids 33:873–878CrossRef
Zurück zum Zitat Westerweel J, Fukushima C, Pedersen J, Hunt J (2005) Mechanics of the turbulent nonturbulent interface of a jet. Phys Rev Lett 95:174,501CrossRef Westerweel J, Fukushima C, Pedersen J, Hunt J (2005) Mechanics of the turbulent nonturbulent interface of a jet. Phys Rev Lett 95:174,501CrossRef
Zurück zum Zitat Westerweel J, Fukushima C, Pedersen J, Hunt J (2009) Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J Fluid Mech 631:199–230CrossRefMATH Westerweel J, Fukushima C, Pedersen J, Hunt J (2009) Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J Fluid Mech 631:199–230CrossRefMATH
Metadaten
Titel
Scalar gradient trajectory measurements using high-frequency cinematographic planar Rayleigh scattering
verfasst von
Markus Gampert
Venkat Narayanaswamy
Norbert Peters
Publikationsdatum
01.12.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 12/2013
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-013-1621-4

Weitere Artikel der Ausgabe 12/2013

Experiments in Fluids 12/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.