Skip to main content
Erschienen in: Experiments in Fluids 12/2013

01.12.2013 | Research Article

Conditional entrainment statistics of inertial particles across shearless turbulent interfaces

verfasst von: S. Gerashchenko, Z. Warhaft

Erschienen in: Experiments in Fluids | Ausgabe 12/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to gain insight into droplet behavior at the edge of clouds, a laboratory experiment has been carried out to study the conditioned statistics of inertial sub-Kolmogorov particles in shearless turbulent–non-turbulent and turbulent–turbulent mixing layers. The water droplets were injected from the homogeneous turbulence side of the flow, and their velocity and size distribution profiles were measured by a combined LDV/PDPA technique. The fluid velocity field was measured using hot-wire anemometry in the droplet-free flow. A conditioning method with the stream-wise velocity chosen as a turbulence detector function was used to identify the turbulent regions in the mixing layer. The particle concentration profiles, mass fluxes and small-scale clustering were compared for the conditioned and unconditioned cases. Previously we demonstrated (Gerashchenko et al. in J Fluid Mech 668:293–303, 2011; Good et al. in J Fluid Mech 694:371–398, 2012) that in this flow, the overall inertial particle transport is dominated by large-scale intermittent motion corresponding to turbulent bursts penetrating from one side of the mixing interface to the other, and that the particle concentration, to a large extent, preserves its homogeneous turbulence (injection side) values inside of turbulent bursts in the mixing layer. In the present work, we show that the conditioned concentration is higher for the turbulent–non-turbulent than for the turbulent–turbulent interface due to higher averaged burst widths for the latter case. This trend is opposite to that for the unconditioned concentration profiles. The unconditioned particle mass flux peaks approximately in the middle of the layer and is more pronounced for the turbulent–turbulent interface. The conditioned particle mass flux monotonically increases across the layer and is higher for the turbulent–turbulent interface. The small-scale turbulent clustering (less than 10 Kolmogorov scales) quantified by the particle radial distribution function is well preserved inside of bursts. Large-scale clustering (10–500 Kolmogorov scales) caused by the burst activity is observed for the unconditioned cases. Particles with large Stokes number are less sensitive to large-scale clustering than those with small Stokes number.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Chun J, Koch DL, Rani S, Ahluwalia A, Collins LR (2005) Clustering of aerosol particles in isotropic turbulence. J Fluid Mech 536:219–251MathSciNetCrossRefMATH Chun J, Koch DL, Rani S, Ahluwalia A, Collins LR (2005) Clustering of aerosol particles in isotropic turbulence. J Fluid Mech 536:219–251MathSciNetCrossRefMATH
Zurück zum Zitat Corrsin S, Kistler A (1955) Free stream boundaries of turbulent flows. NACA report no. 1244 Corrsin S, Kistler A (1955) Free stream boundaries of turbulent flows. NACA report no. 1244
Zurück zum Zitat Devenish BJ, Bartello P, Brenguier JL, Collins LR, Grabowski WW, IJzermans RHA, Malinowski SP, Reeks MW, Vassilicos JC, Wang LP, Warhaft Z (2012) Droplet growth in warm turbulent clouds. Q J R Meteorol Soc 138:1401–1429. doi:10.1002/qj.1897 CrossRef Devenish BJ, Bartello P, Brenguier JL, Collins LR, Grabowski WW, IJzermans RHA, Malinowski SP, Reeks MW, Vassilicos JC, Wang LP, Warhaft Z (2012) Droplet growth in warm turbulent clouds. Q J R Meteorol Soc 138:1401–1429. doi:10.​1002/​qj.​1897 CrossRef
Zurück zum Zitat Falkovich G, Fouxon A, Stepanov MG (2002) Acceleration of rain initiation by cloud turbulence. Nature 419:151–154CrossRef Falkovich G, Fouxon A, Stepanov MG (2002) Acceleration of rain initiation by cloud turbulence. Nature 419:151–154CrossRef
Zurück zum Zitat Gerashchenko S, Sharp NS, Neuscamman S, Warhaft Z (2008) Lagrangian measurements of inertial particle accelerations in a turbulent boundary layer. J Fluid Mech 617:255–281CrossRefMATH Gerashchenko S, Sharp NS, Neuscamman S, Warhaft Z (2008) Lagrangian measurements of inertial particle accelerations in a turbulent boundary layer. J Fluid Mech 617:255–281CrossRefMATH
Zurück zum Zitat de Jong J, Salazar JPLC, Cao L, Woodward SH, Collins LR, Meng H (2010) Measurement of inertial particle clustering and relative velocity statistics in isotropic turbulence using holographic imaging. Int J Multiphase Flow 36:324–332CrossRef de Jong J, Salazar JPLC, Cao L, Woodward SH, Collins LR, Meng H (2010) Measurement of inertial particle clustering and relative velocity statistics in isotropic turbulence using holographic imaging. Int J Multiphase Flow 36:324–332CrossRef
Zurück zum Zitat Kollman W (1987) Conditional second order closure for turbulent shear flows. Tech. rep. Kollman W (1987) Conditional second order closure for turbulent shear flows. Tech. rep.
Zurück zum Zitat Mydlarski L, Warhaft Z (1996) On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J Fluid Mech 320:331–368CrossRef Mydlarski L, Warhaft Z (1996) On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J Fluid Mech 320:331–368CrossRef
Zurück zum Zitat Pruppacher HR, Klett JD (1997) Microphysics of clouds and precipitation. Kluwer, Dordrecht Pruppacher HR, Klett JD (1997) Microphysics of clouds and precipitation. Kluwer, Dordrecht
Zurück zum Zitat Reade WC, Collins LR (2000) Effect of preferential concentration on turbulent collision rates. Phys Fluids 12:2530–2540CrossRef Reade WC, Collins LR (2000) Effect of preferential concentration on turbulent collision rates. Phys Fluids 12:2530–2540CrossRef
Zurück zum Zitat Salazar JPLC, de Jong J, Cao L, Woodward S, Meng H, Collins LR (2008) Experimental and numerical investigation of inertial particle clustering in isotropic turbulence. J Fluid Mech 600:245–256CrossRefMATH Salazar JPLC, de Jong J, Cao L, Woodward S, Meng H, Collins LR (2008) Experimental and numerical investigation of inertial particle clustering in isotropic turbulence. J Fluid Mech 600:245–256CrossRefMATH
Zurück zum Zitat Saw EW, Shaw RA, Ayyalasomayajula S, Chuang PY, Gylfason A (2008) Inertial clustering of particles in high-Reynolds-number turbulence. Phys Rev Lett 100:214501CrossRef Saw EW, Shaw RA, Ayyalasomayajula S, Chuang PY, Gylfason A (2008) Inertial clustering of particles in high-Reynolds-number turbulence. Phys Rev Lett 100:214501CrossRef
Zurück zum Zitat Shaw RA (2003) Particle-turbulence interactions in atmospheric clouds. Annu Rev Fluid Mech 35:183–227CrossRef Shaw RA (2003) Particle-turbulence interactions in atmospheric clouds. Annu Rev Fluid Mech 35:183–227CrossRef
Zurück zum Zitat Siebert H, Gerashchenko S, Lehmann K, Gylfason A, Collins LR, Shaw RA, Warhaft Z (2010) Towards understanding the role of turbulence on droplets in clouds: in situ and laboratory measurements. Atmos Res 97:426–437CrossRef Siebert H, Gerashchenko S, Lehmann K, Gylfason A, Collins LR, Shaw RA, Warhaft Z (2010) Towards understanding the role of turbulence on droplets in clouds: in situ and laboratory measurements. Atmos Res 97:426–437CrossRef
Zurück zum Zitat Stoff H (1981) An intermittency meter applied to a round jet. J Phys E: Sci Instrum 24:985–987CrossRef Stoff H (1981) An intermittency meter applied to a round jet. J Phys E: Sci Instrum 24:985–987CrossRef
Zurück zum Zitat Townsend AA (1948) Local isotropy in the turbulent wake of a cylinder. Aust J Sci Res A Phys Sci 1:161–174 Townsend AA (1948) Local isotropy in the turbulent wake of a cylinder. Aust J Sci Res A Phys Sci 1:161–174
Zurück zum Zitat Tropea C, Yarin AL, Foss JF (2007) Springer Handbook of Experimental Fluid Mechanics Tropea C, Yarin AL, Foss JF (2007) Springer Handbook of Experimental Fluid Mechanics
Zurück zum Zitat Westerweel J, Hunt JCR, Pedersen JM, Fukushima C (2004) The turbulent/non-turbulent interface of a self-similar jet. APS Division of Fluid Dynamics Meeting Abstracts pp 199–230 Westerweel J, Hunt JCR, Pedersen JM, Fukushima C (2004) The turbulent/non-turbulent interface of a self-similar jet. APS Division of Fluid Dynamics Meeting Abstracts pp 199–230
Zurück zum Zitat Winoto SH, Shah DA, Ang SG, Kamil Bin Ishak M (1993) Some experimental techniques to detect transition in boundary layer flow. Exp Tech 17:25–29CrossRef Winoto SH, Shah DA, Ang SG, Kamil Bin Ishak M (1993) Some experimental techniques to detect transition in boundary layer flow. Exp Tech 17:25–29CrossRef
Zurück zum Zitat Wood AM, Hwang W, Eaton JK (2005) Preferential concentration of particles in homogeneous and isotropic turbulence. Int J Multiphase Flow 31:1220–1230CrossRefMATH Wood AM, Hwang W, Eaton JK (2005) Preferential concentration of particles in homogeneous and isotropic turbulence. Int J Multiphase Flow 31:1220–1230CrossRefMATH
Zurück zum Zitat Zhang DH, Chew YT, Winoto SH (1995) A proposed intermittency measurement method for transitional boundary layer flows. Exp Fluids 19:426–428. doi:10.1007/BF00190260 Zhang DH, Chew YT, Winoto SH (1995) A proposed intermittency measurement method for transitional boundary layer flows. Exp Fluids 19:426–428. doi:10.​1007/​BF00190260
Metadaten
Titel
Conditional entrainment statistics of inertial particles across shearless turbulent interfaces
verfasst von
S. Gerashchenko
Z. Warhaft
Publikationsdatum
01.12.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 12/2013
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-013-1631-2

Weitere Artikel der Ausgabe 12/2013

Experiments in Fluids 12/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.