Skip to main content
Erschienen in: Experiments in Fluids 4/2014

01.04.2014 | Research Article

Mechanism of autorotation flight of maple samaras (Acer palmatum)

verfasst von: Sang Joon Lee, Eui Jae Lee, Myong Hwan Sohn

Erschienen in: Experiments in Fluids | Ausgabe 4/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Some winged seeds exhibit autorotation flight during their descent to migrate far away from their parent trees by using oncoming wind. The reduced descent speed of autorotating maple seeds is attributed to the high lift force generated by a leading-edge vortex (LEV). In this study, several prominent features of the autorotation flight of maple samaras (Acer palmatum) were investigated experimentally. The autorotation flight of each maple seed was observed to be very stable during its fall. The nominal values of the dynamic motion parameters were 1.2 m/s for descent velocity, 130.9 rad/s for spinning rate, 22° for coning angle, and 1.5° for pitch angle. Velocity fields of the flow around an autorotating maple samaras model were measured by particle image velocimetry; wind speed was controlled to be similar to the descending velocity. As a result, a highly stable LEV was attached on the leeward side of the autorotating seed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Azuma A, Okuno Y (1987) Flight of a samara, Alsomitra macrocarpa. J Theor Biol 129:263–274CrossRef Azuma A, Okuno Y (1987) Flight of a samara, Alsomitra macrocarpa. J Theor Biol 129:263–274CrossRef
Zurück zum Zitat Azuma A, Yasuda K (1989) Flight performance of rotary seeds. J Theor Biol 138:23–53CrossRef Azuma A, Yasuda K (1989) Flight performance of rotary seeds. J Theor Biol 138:23–53CrossRef
Zurück zum Zitat Birch JM, Dickson WB, Dickinson MH (2004) Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. J Exp Biol 207:1063–1072CrossRef Birch JM, Dickson WB, Dickinson MH (2004) Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. J Exp Biol 207:1063–1072CrossRef
Zurück zum Zitat Bullock JM, Kenward RE, Hails RS (2002) Dispersal ecology: 42nd symposium of the British Ecological Society. Cambridge University Press, Cambridge Bullock JM, Kenward RE, Hails RS (2002) Dispersal ecology: 42nd symposium of the British Ecological Society. Cambridge University Press, Cambridge
Zurück zum Zitat Cain ML, Milligan BG, Strand AE (2000) Long-distance seed dispersal in plant populations. Am J Bot 87:1217–1227CrossRef Cain ML, Milligan BG, Strand AE (2000) Long-distance seed dispersal in plant populations. Am J Bot 87:1217–1227CrossRef
Zurück zum Zitat Carr ZR, Chen C, Ringuette MJ (2013) Finite-span rotating wings: three-dimensional vortex formation and variations with aspect ratio. Exp Fluids 54:1–26CrossRef Carr ZR, Chen C, Ringuette MJ (2013) Finite-span rotating wings: three-dimensional vortex formation and variations with aspect ratio. Exp Fluids 54:1–26CrossRef
Zurück zum Zitat Dickinson MH, Lehmann F-O, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRef Dickinson MH, Lehmann F-O, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRef
Zurück zum Zitat Ellington CP, van den Berg C, Willmott AP, Thomas ALR (1996) Leading-edge vortices in insect flight. Nature 384:626–630CrossRef Ellington CP, van den Berg C, Willmott AP, Thomas ALR (1996) Leading-edge vortices in insect flight. Nature 384:626–630CrossRef
Zurück zum Zitat Greene D, Johnson E (1993) Seed mass and dispersal capacity in wind-dispersed diaspores. Oikos 67:69–74 Greene D, Johnson E (1993) Seed mass and dispersal capacity in wind-dispersed diaspores. Oikos 67:69–74
Zurück zum Zitat Horn HS, Nathan R, Kaplan SR (2001) Long-distance dispersal of tree seeds by wind. Ecol Res 16:877–885CrossRef Horn HS, Nathan R, Kaplan SR (2001) Long-distance dispersal of tree seeds by wind. Ecol Res 16:877–885CrossRef
Zurück zum Zitat Lentink D, Dickson WB, Van Leeuwen JL, Dickinson MH (2009) Leading-edge vortices elevate lift of autorotating plant seeds. Science 324:1438–1440CrossRef Lentink D, Dickson WB, Van Leeuwen JL, Dickinson MH (2009) Leading-edge vortices elevate lift of autorotating plant seeds. Science 324:1438–1440CrossRef
Zurück zum Zitat McCutchen C (1977) The spinning rotation of ash and tulip tree samaras. Science 197:691–692CrossRef McCutchen C (1977) The spinning rotation of ash and tulip tree samaras. Science 197:691–692CrossRef
Zurück zum Zitat Minami S, Azuma A (2003) Various flying modes of wind-dispersal seeds. J Theor Biol 225:1–14CrossRef Minami S, Azuma A (2003) Various flying modes of wind-dispersal seeds. J Theor Biol 225:1–14CrossRef
Zurück zum Zitat Muijres FT, Johansson LC, Barfield R, Wolf M, Spedding GR, Hedenstrom A (2008) Leading-edge vortex improves lift in slow-flying bats. Science 319:1250–1253CrossRef Muijres FT, Johansson LC, Barfield R, Wolf M, Spedding GR, Hedenstrom A (2008) Leading-edge vortex improves lift in slow-flying bats. Science 319:1250–1253CrossRef
Zurück zum Zitat Norberg R (1973) Autorotation, self-stability, and structure of single-winged fruits and seeds (samaras) with comparative remarks on animal flight. Biol Rev 48:561–596CrossRef Norberg R (1973) Autorotation, self-stability, and structure of single-winged fruits and seeds (samaras) with comparative remarks on animal flight. Biol Rev 48:561–596CrossRef
Zurück zum Zitat Ozen CA, Rockwell D (2012) Three-dimensional vortex structure on a rotating wing. J Fluid Mech 707:541–550CrossRefMATH Ozen CA, Rockwell D (2012) Three-dimensional vortex structure on a rotating wing. J Fluid Mech 707:541–550CrossRefMATH
Zurück zum Zitat Salcedo E, Treviño C, Vargas RO, Martínez LA (2013) Stereoscopic particle image velocimetry measurements of the three-dimensional flow field of a descending autorotating Mahogany seed (Swietenia macrophylla). J Exp Biol 216:2017–2030 Salcedo E, Treviño C, Vargas RO, Martínez LA (2013) Stereoscopic particle image velocimetry measurements of the three-dimensional flow field of a descending autorotating Mahogany seed (Swietenia macrophylla). J Exp Biol 216:2017–2030
Zurück zum Zitat Shyy W, Lin H (2007) Flapping wings and aerodynamic lift: the role of leading-edge vortices. AIAA J 45:2817–2819CrossRef Shyy W, Lin H (2007) Flapping wings and aerodynamic lift: the role of leading-edge vortices. AIAA J 45:2817–2819CrossRef
Zurück zum Zitat Skews BW (1991) Autorotation of many-sided bodies in an airstream. Nature 352:512–513CrossRef Skews BW (1991) Autorotation of many-sided bodies in an airstream. Nature 352:512–513CrossRef
Zurück zum Zitat Smith EH (1970) Autorotating wings: an experimental investigation. Cambridge University Press, Cambridge Smith EH (1970) Autorotating wings: an experimental investigation. Cambridge University Press, Cambridge
Zurück zum Zitat Ulrich ER, Pines DJ, Humbert JS (2010) From falling to flying: the path to powered flight of a robotic samara nano air vehicle. Bioinspir Biomim 5:045009CrossRef Ulrich ER, Pines DJ, Humbert JS (2010) From falling to flying: the path to powered flight of a robotic samara nano air vehicle. Bioinspir Biomim 5:045009CrossRef
Zurück zum Zitat Usherwood JR, Ellington CP (2002) The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail. J Exp Biol 205:1565–1576 Usherwood JR, Ellington CP (2002) The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail. J Exp Biol 205:1565–1576
Zurück zum Zitat Westneat MW, Socha JJ, Lee WK (2008) Advances in biological structure, function, and physiology using synchrotron X-ray imaging. Annu Rev Physiol 70:119–142CrossRef Westneat MW, Socha JJ, Lee WK (2008) Advances in biological structure, function, and physiology using synchrotron X-ray imaging. Annu Rev Physiol 70:119–142CrossRef
Zurück zum Zitat Yasuda K, Azuma A (1997) The autorotation boundary in the flight of samaras. J Theor Biol 185:313–320CrossRef Yasuda K, Azuma A (1997) The autorotation boundary in the flight of samaras. J Theor Biol 185:313–320CrossRef
Metadaten
Titel
Mechanism of autorotation flight of maple samaras (Acer palmatum)
verfasst von
Sang Joon Lee
Eui Jae Lee
Myong Hwan Sohn
Publikationsdatum
01.04.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 4/2014
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-014-1718-4

Weitere Artikel der Ausgabe 4/2014

Experiments in Fluids 4/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.