Skip to main content
Erschienen in: Experiments in Fluids 1/2015

01.01.2015 | Research Article

Structure and dynamics of the wake of a reacting jet injected into a swirling, vitiated crossflow in a staged combustion system

verfasst von: Pratikash P. Panda, Mario Roa, Peter Szedlacsek, Walter R. Laster, Robert P. Lucht

Erschienen in: Experiments in Fluids | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Secondary injection of the fuel, also referred to as staged combustion, is being studied by gas turbine manufacturers as a means of increasing the power output of the gas turbine systems with minimal contribution to NO x emission. A reacting jet issuing into a swirling, vitiated crossflow operating at gas turbine relevant conditions was investigated as a means of secondary injection. In this study, the flow field of the reacting jet was investigated using high repetition rate (HRR) (5 kHz), two-component particle imaging velocimetry and OH-PLIF. In applications similar to the one currently studied in this work, viz. secondary injection of fuel in a gas turbine combustor, rapid mixing and chemical reaction in the near field of jet injection are desirable. Based on our analysis, it is hypothesized that the shear layer and wake field vortices play a significant role in stabilizing a steady reaction front within the near wake region of the jet. Premixed jets composed of natural gas and air were injected through an extended nozzle into the vitiated flow downstream of a low-swirl burner that produced the vitiated, swirled flow. The jet-to-crossflow momentum flux ratio was varied to study the corresponding effect on the flow field. The time-averaged flow field shows a steady wake vortex very similar to that seen in the wake of a cylindrical bluff body which helps to stabilize the reaction zone within the wake of the jet. The HRR data acquisition also provided temporally resolved information on the transient structure of the wake flow associated with the reacting jet in crossflow.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bandaru RV, Turns SR (2000) Turbulent jet flames in a crossflow: effects of some jet, crossflow, and pilot-flame parameters on emissions. Combust Flame 121(1–2):137–151CrossRef Bandaru RV, Turns SR (2000) Turbulent jet flames in a crossflow: effects of some jet, crossflow, and pilot-flame parameters on emissions. Combust Flame 121(1–2):137–151CrossRef
Zurück zum Zitat Böhm B, Heeger C, Boxx I, Meier W, Dreizler A (2009) Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous high speed PIV/OH-PLIF. Proc Combust Inst 32(2):1647–1654CrossRef Böhm B, Heeger C, Boxx I, Meier W, Dreizler A (2009) Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous high speed PIV/OH-PLIF. Proc Combust Inst 32(2):1647–1654CrossRef
Zurück zum Zitat Boxx I, Arndt CM, Carter C, Meier W (2012) High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor. Exp Fluids 52(3):555–567CrossRef Boxx I, Arndt CM, Carter C, Meier W (2012) High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor. Exp Fluids 52(3):555–567CrossRef
Zurück zum Zitat Boxx I, Carter C, Stohr M, Meier W (2013) Study of the mechanism for flame stabilization in gas turbine model combustors using kHz laser diagnostics. Exp Fluids 54:1532CrossRef Boxx I, Carter C, Stohr M, Meier W (2013) Study of the mechanism for flame stabilization in gas turbine model combustors using kHz laser diagnostics. Exp Fluids 54:1532CrossRef
Zurück zum Zitat Chan WL, Kolla H, Chen JH, Ihme M (2014) Assessment of model assumptions and budget terms of the unsteady flamelet equations for a turbulent reacting jet-in-cross-flow. Combust Flame 161(10):2601–2613CrossRef Chan WL, Kolla H, Chen JH, Ihme M (2014) Assessment of model assumptions and budget terms of the unsteady flamelet equations for a turbulent reacting jet-in-cross-flow. Combust Flame 161(10):2601–2613CrossRef
Zurück zum Zitat Cheng R, Yegian D, Miyasato M, Samuelsen G, Benson CE, Pellizzari R, Loftus P (2000) Scaling and development of low-swirl burners for low-emission furnaces and boilers. Proc Combust Inst 28:1305–1313CrossRef Cheng R, Yegian D, Miyasato M, Samuelsen G, Benson CE, Pellizzari R, Loftus P (2000) Scaling and development of low-swirl burners for low-emission furnaces and boilers. Proc Combust Inst 28:1305–1313CrossRef
Zurück zum Zitat Cortelezzi L, Karagozian AR (2001) On the formation of the counter-rotating vortex pair in transverse jets. J Fluid Mech 446:347–373MATHMathSciNet Cortelezzi L, Karagozian AR (2001) On the formation of the counter-rotating vortex pair in transverse jets. J Fluid Mech 446:347–373MATHMathSciNet
Zurück zum Zitat Denev JA, Fröhlich F, Bockhorn H (2009) Large eddy simulation of a swirling transverse jet into a crossflow with investigation of scalar transport. Phys Fluids 21(1):015101 Denev JA, Fröhlich F, Bockhorn H (2009) Large eddy simulation of a swirling transverse jet into a crossflow with investigation of scalar transport. Phys Fluids 21(1):015101
Zurück zum Zitat Fric TF, Roshko A (1994) Vortical structure in the wake of a transverse jet. J Fluid Mech 279:1–47CrossRef Fric TF, Roshko A (1994) Vortical structure in the wake of a transverse jet. J Fluid Mech 279:1–47CrossRef
Zurück zum Zitat Gollahalli SR, Nanjundappa B (1995) Burner wake stabilized gas jet flames in cross-flow. Combust Sci Technol 109:327–346CrossRef Gollahalli SR, Nanjundappa B (1995) Burner wake stabilized gas jet flames in cross-flow. Combust Sci Technol 109:327–346CrossRef
Zurück zum Zitat Grout RW, Gruber A, Yoo CS, Chen JH (2011) Direct numerical simulation of flame stabilization downstream of a transverse fuel jet in cross-flow. Proc Combust Inst 33:1629–1637CrossRef Grout RW, Gruber A, Yoo CS, Chen JH (2011) Direct numerical simulation of flame stabilization downstream of a transverse fuel jet in cross-flow. Proc Combust Inst 33:1629–1637CrossRef
Zurück zum Zitat Hasselbrink EF, Mungal MG (2001a) Transverse jets and jet flames, Part-1: scaling laws for strong transverse jets. J Fluid Mech 443:1–25MATH Hasselbrink EF, Mungal MG (2001a) Transverse jets and jet flames, Part-1: scaling laws for strong transverse jets. J Fluid Mech 443:1–25MATH
Zurück zum Zitat Hasselbrink EF, Mungal MG (2001b) Transverse jets and jet flames. Part 2. Velocity and OH field imaging. J Fluid Mech 443:27–68 Hasselbrink EF, Mungal MG (2001b) Transverse jets and jet flames. Part 2. Velocity and OH field imaging. J Fluid Mech 443:27–68
Zurück zum Zitat Huang RF, Chang JM (1994) Coherent structure in a combusting jet in crossflow. AIAA J 32(6):1120–1125CrossRef Huang RF, Chang JM (1994) Coherent structure in a combusting jet in crossflow. AIAA J 32(6):1120–1125CrossRef
Zurück zum Zitat Kolla H, Grout RW, Gruber A, Chen (2012) Mechanisms of flame stabilization and blow-off in a reacting turbulent hydrogen jet in cross-flow. Combust Flame 159:2755–2766CrossRef Kolla H, Grout RW, Gruber A, Chen (2012) Mechanisms of flame stabilization and blow-off in a reacting turbulent hydrogen jet in cross-flow. Combust Flame 159:2755–2766CrossRef
Zurück zum Zitat Lamont W, Roa M, Meyer S, Lucht RP (2012) Emission measurements and CH* chemiluminescence of a reactive jet in a vitiated crossflow. J Eng Gas Turbines Power 134(8):081502 Lamont W, Roa M, Meyer S, Lucht RP (2012) Emission measurements and CH* chemiluminescence of a reactive jet in a vitiated crossflow. J Eng Gas Turbines Power 134(8):081502
Zurück zum Zitat Lieuwen TC, Yang V (2013) Gas turbine emissions, 1st edn. Cambridge University Press, CambridgeCrossRef Lieuwen TC, Yang V (2013) Gas turbine emissions, 1st edn. Cambridge University Press, CambridgeCrossRef
Zurück zum Zitat Margason RJ (1993) Fifty years of jet in cross flow research. In: AGARD, computational and experimental assessment of jets in cross flow. SEE N94-28003 07-34, pp 1–41 Margason RJ (1993) Fifty years of jet in cross flow research. In: AGARD, computational and experimental assessment of jets in cross flow. SEE N94-28003 07-34, pp 1–41
Zurück zum Zitat M’Closkey RT, King J, Cortelezzi L, Karagozian AR (2002) The actively controlled jet in crossflow. J Fluid Mech 452:325–335MATH M’Closkey RT, King J, Cortelezzi L, Karagozian AR (2002) The actively controlled jet in crossflow. J Fluid Mech 452:325–335MATH
Zurück zum Zitat Moussa ZM, Trischka JW, Eskinazi S (1977) The near field in the mixing of a round jet with a cross-stream. J Fluid Mech 80:49–80CrossRef Moussa ZM, Trischka JW, Eskinazi S (1977) The near field in the mixing of a round jet with a cross-stream. J Fluid Mech 80:49–80CrossRef
Zurück zum Zitat Muppidi S, Mahesh K (2007) Direct numerical simulation of round turbulent jets in crossflow. J Fluid Mech 574:59–84CrossRefMATH Muppidi S, Mahesh K (2007) Direct numerical simulation of round turbulent jets in crossflow. J Fluid Mech 574:59–84CrossRefMATH
Zurück zum Zitat New TH, Lim TT, Luo SC (2006) Effects of jet velocity profiles on a round jet in cross-flow. Exp Fluids 40:859–875CrossRef New TH, Lim TT, Luo SC (2006) Effects of jet velocity profiles on a round jet in cross-flow. Exp Fluids 40:859–875CrossRef
Zurück zum Zitat Saravanamuttoo HIH, Rogers GFC, Cohen H, Straznicky PV (2009) Gas turbine theory, 6th edn. Pearson Education Ltd., Harlow Saravanamuttoo HIH, Rogers GFC, Cohen H, Straznicky PV (2009) Gas turbine theory, 6th edn. Pearson Education Ltd., Harlow
Zurück zum Zitat Scarano F, Poelma C (2009) Three-dimensional vorticity patterns of cylinder wakes. Exp Fluids 47:69–83CrossRef Scarano F, Poelma C (2009) Three-dimensional vorticity patterns of cylinder wakes. Exp Fluids 47:69–83CrossRef
Zurück zum Zitat Steinberg AM, Sadanandan R, Dem C, Kutne P, Meier W (2013) Structure and stabilization of hydrogen jet flames in cross-flows. Proc Combust Inst 34(1):1499–1507CrossRef Steinberg AM, Sadanandan R, Dem C, Kutne P, Meier W (2013) Structure and stabilization of hydrogen jet flames in cross-flows. Proc Combust Inst 34(1):1499–1507CrossRef
Zurück zum Zitat Stohr M, Sadanandan R, Meier W (2011) Phase-resolved characterization of vortex-flame interaction in a turbulent swirl flame. Exp Fluids 51:1153–1167CrossRef Stohr M, Sadanandan R, Meier W (2011) Phase-resolved characterization of vortex-flame interaction in a turbulent swirl flame. Exp Fluids 51:1153–1167CrossRef
Zurück zum Zitat Su LK, Mungal MG (2004) Simultaneous measurements of velocity and scalar fields: application in crossflowing jets and lifted jet diffusion flames. J Fluid Mech 513:1–45CrossRefMATH Su LK, Mungal MG (2004) Simultaneous measurements of velocity and scalar fields: application in crossflowing jets and lifted jet diffusion flames. J Fluid Mech 513:1–45CrossRefMATH
Zurück zum Zitat Sullivan R, Benjamin W, Noble DR, Seitzman JM, Lieuwen T (2013) Unsteady flame-wall interactions in a reacting jet injected into a vitiated cross-flow. Proc Combust Inst 34:3203–3210CrossRef Sullivan R, Benjamin W, Noble DR, Seitzman JM, Lieuwen T (2013) Unsteady flame-wall interactions in a reacting jet injected into a vitiated cross-flow. Proc Combust Inst 34:3203–3210CrossRef
Zurück zum Zitat Sullivan R, Benjamin W, Noble DR, Seitzman JM, Lieuwen T (2014) Time-averaged characteristics of a reacting fuel jet in vitiated cross-flow. Combust Flame 161(7):1792–1803CrossRef Sullivan R, Benjamin W, Noble DR, Seitzman JM, Lieuwen T (2014) Time-averaged characteristics of a reacting fuel jet in vitiated cross-flow. Combust Flame 161(7):1792–1803CrossRef
Zurück zum Zitat Westerweel J, Elsinga G, Adrian RJ (2013) Particle image velocimetry for complex and turbulent flows. Annu Rev Fluid Mech 45:409–436CrossRefMathSciNet Westerweel J, Elsinga G, Adrian RJ (2013) Particle image velocimetry for complex and turbulent flows. Annu Rev Fluid Mech 45:409–436CrossRefMathSciNet
Zurück zum Zitat Wooler PT (1969) Flow of a circular jet into a cross flow. Journal of Aircraft 6(3):283–284CrossRef Wooler PT (1969) Flow of a circular jet into a cross flow. Journal of Aircraft 6(3):283–284CrossRef
Metadaten
Titel
Structure and dynamics of the wake of a reacting jet injected into a swirling, vitiated crossflow in a staged combustion system
verfasst von
Pratikash P. Panda
Mario Roa
Peter Szedlacsek
Walter R. Laster
Robert P. Lucht
Publikationsdatum
01.01.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 1/2015
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-014-1885-3

Weitere Artikel der Ausgabe 1/2015

Experiments in Fluids 1/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.