Skip to main content
Log in

PIV-DCNN: cascaded deep convolutional neural networks for particle image velocimetry

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Velocity estimation (extracting the displacement vector information) from the particle image pairs is of critical importance for particle image velocimetry. This problem is mostly transformed into finding the sub-pixel peak in a correlation map. To address the original displacement extraction problem, we propose a different evaluation scheme (PIV-DCNN) with four-level regression deep convolutional neural networks. At each level, the networks are trained to predict a vector from two input image patches. The low-level network is skilled at large displacement estimation and the high- level networks are devoted to improving the accuracy. Outlier replacement and symmetric window offset operation glue the well- functioning networks in a cascaded manner. Through comparison with the standard PIV methods (one-pass cross-correlation method, three-pass window deformation), the practicability of the proposed PIV-DCNN is verified by the application to a diversity of synthetic and experimental PIV images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. https://github.com/yongleex/PIV-DCNN.

  2. http://www.vlfeat.org/matconvnet/.

References

  • Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Astarita T (2007) Analysis of weighting windows for image deformation methods in PIV. Exp Fluids 43(6):859–872

    Article  Google Scholar 

  • Corpetti T, Heitz D, Arroyo G, Memin E, Santa-Cruz A (2006) Fluid experimental flow estimation based on an optical-flow scheme. Exp fluids 40(1):80–97

    Article  Google Scholar 

  • Dosovitskiy A, Fischer P, Ilg E, Hausser P, Hazirbas C, Golkov V, van der Smagt P, Cremers D, Brox T (2015) Flownet: Learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp 2758–2766

  • Eckstein A, Vlachos PP (2009) Assessment of advanced windowing techniques for digital particle image velocimetry (DPIV). Meas Sci Technol 20(7):075,402

    Article  Google Scholar 

  • Gadot D, Wolf L (2016) Patchbatch: a batch augmented loss for optical flow. Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on 4236–4245. http://ieeexplore.ieee.org/document/7780828/

  • Goodfellow I, Bengio Y, Courville A (2016) Deep learning, http://www.deeplearningbook.org, book in preparation for MIT Press

  • Grant I, Pan X (1995) An investigation of the performance of multi layer, neural networks applied to the analysis of PIV images. Exp Fluids 19(3):159–166

    Article  Google Scholar 

  • Grant I, Pan XJ (1997) The use of neural techniques in PIV and PTV. Meas Sci Technol 8(12):1399–1405

    Article  Google Scholar 

  • Grant I, Pan XJ, Romano F, Wang X (1998) Neural-network method applied to the stereo image correspondence problem in three-component particle image velocimetry. Appl Optics 37(17):3656–3663

    Article  Google Scholar 

  • Hart DP (2000) PIV error correction. Exp Fluids 29(1):13–22

    Article  Google Scholar 

  • He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. CoRR abs/1512.03385, http://arxiv.org/abs/1512.03385

  • Kimura I, Susaki Y, Kiyohara R, Kaga A, Kuroe Y (2002) Gradient-based PIV using neural networks. J Vis 5(4):363–370

    Article  Google Scholar 

  • Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks pp 1097–1105

  • Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  • Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  • Liang D, Jiang C, Li Y (2003) Cellular neural network to detect spurious vectors in PIV data. Exp Fluids 34(1):52–62

    Article  Google Scholar 

  • Lin M, Chen Q, Yan S (2013) Network in network. CoRR abs/1312.4400, URL http://arxiv.org/abs/1312.4400

  • Luo W, Schwing AG, Urtasun R (2016) Efficient deep learning for stereo matching pp 5695–5703

  • Miao S, Wang ZJ, Liao R (2016) A cnn regression approach for real-time 2d/3d registration. IEEE Trans Med Imaging 35(5):1352–1363

    Article  Google Scholar 

  • Okamoto K, Nishio S, Saga T, Kobayashi T (2000) Standard images for particle-image velocimetry. Meas Sci Technol 11(6):685

    Article  Google Scholar 

  • Raffel M, Willert C, Wereley S, Kompenhans J (2007) Particle image velocimetry: a practical guide. Springer, Berlin

    Google Scholar 

  • Scarano F (2001) Iterative image deformation methods in PIV. Meas Sci Technol 13(1):R1

    Article  Google Scholar 

  • Scarano F (2003) Theory of non-isotropic spatial resolution in PIV. Exp Fluids 35(3):268–277

    Article  Google Scholar 

  • Schrijer F, Scarano F (2008) Effect of predictor-corrector filtering on the stability and spatial resolution of iterative PIV interrogation. Exp fluids 45(5):927–941

    Article  Google Scholar 

  • Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. International conference on learning representations. https://arxiv.org/abs/1409.1556

  • Sun Y, Wang X, Tang X (2013) Deep convolutional network cascade for facial point detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 3476–3483

  • Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2015) Rethinking the inception architecture for computer vision pp 2818–2826

  • Thielicke W, Stamhuis E (2014) PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J Open Res Soft 2(1). https://openresearchsoftware.metajnl.com/articles/10.5334/jors.bl/

  • Vedaldi A, Lenc K (2015) Matconvnet – convolutional neural networks for matlab. In: Proceeding of the ACM Int. Conf. on Multimedia

  • Wereley ST, Meinhart CD (2001) Second-order accurate particle image velocimetry. Exp Fluids 31(3):258–268

    Article  Google Scholar 

  • Westerweel J, Scarano F (2005) Universal outlier detection for PIV data. Exp Fluids 39(6):1096–1100

    Article  Google Scholar 

  • Westerweel J, Dabiri D, Gharib M (1997) The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings. Exp fluids 23(1):20–28

    Article  Google Scholar 

  • Willert CE, Gharib M (1997) The interaction of spatially modulated vortex pairs with free surfaces. J Fluid Mech 345:227–250

    Article  MathSciNet  Google Scholar 

  • Zagoruyko S, Komodakis N (2015) Learning to compare image patches via convolutional neural networks pp 4353–4361

  • Zbontar J, Lecun Y (2015) Computing the stereo matching cost with a convolutional neural network pp 1592–1599

  • Zbontar J, Lecun Y (2016) Stereo matching by training a convolutional neural network to compare image patches. J Mach Learning Res 17(65):2287–2318

    MATH  Google Scholar 

  • Zhao L, Jia K (2015) Deep adaptive log-demons: diffeomorphic image registration with very large deformations. Comput Math Methods Med 836(202–836):202

    Google Scholar 

Download references

Acknowledgements

We would like to thank all the professional editor and reviewers for the substantial effort and expertise that contribute to this work. This work was supported by National Natural Science Foundation of China (Grant Nos. 51327801 and 51475193) and the Major Project Foundation of Hubei Province (Grant No. 2016AAA009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Yang, H. & Yin, Z. PIV-DCNN: cascaded deep convolutional neural networks for particle image velocimetry. Exp Fluids 58, 171 (2017). https://doi.org/10.1007/s00348-017-2456-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-017-2456-1

Navigation