Skip to main content
Erschienen in: Experiments in Fluids 11/2018

01.11.2018 | Research Article

Bubbly drag reduction accompanied by void wave generation inside turbulent boundary layers

verfasst von: Hyun Jin Park, Yuji Tasaka, Yuichi Murai

Erschienen in: Experiments in Fluids | Ausgabe 11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Frictional drag reduction, a technique by which bubbles are injected into the turbulent boundary layer surrounding the hull of a marine vessel, is now at the stage of practical applications. In achieving drag reduction, void waves often stand out naturally, the reason for which still remains unclear. The present study aims at an experimental characterization of void waves along a flat-bottom ship. A 100-m-long water reservoir is used in which a 4-m-long fully transparent experimental model ship, equipped with wall shear stress sensors and cameras, is towed by a train at speeds of up to 3 m/s. From measurements of the transition of the bubble distribution from random to wavy accumulated swarms downstream, the accompanying intrinsic passing frequency of void waves is examined. A 30% drag reduction rate was recorded with the appearance of void waves in the boundary layer at an average void fraction of 4%. This is much greater than the trivial inertia effect from drag reduction. To clarify the characteristics of the measured void waves, we compare the void wave frequency range to those of several flow instabilities that may occur in bubbly two-phase boundary layer flows.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bagheri S, Schlatter P, Schmid P, Henningson DS (2009) Global stability of a jet in crossflow. J Fluid Mech 624:33–44MathSciNetCrossRef Bagheri S, Schlatter P, Schmid P, Henningson DS (2009) Global stability of a jet in crossflow. J Fluid Mech 624:33–44MathSciNetCrossRef
Zurück zum Zitat Broadbent HA, Maksik YA (1992) Analysis of periodic data using Walsh functions. Behav Res Methods Instrum Comput 24:238–247CrossRef Broadbent HA, Maksik YA (1992) Analysis of periodic data using Walsh functions. Behav Res Methods Instrum Comput 24:238–247CrossRef
Zurück zum Zitat Ceccio SL (2010) Frictional drag reduction of external flow with bubble and gas injection. Annu Rev Fluid Mech 42:183–203CrossRef Ceccio SL (2010) Frictional drag reduction of external flow with bubble and gas injection. Annu Rev Fluid Mech 42:183–203CrossRef
Zurück zum Zitat Drazin PG (1958) The stability of a shear layer in an unbounded heterogeneous inviscid fluid. J Fluid Mech 4:214–224MathSciNetCrossRef Drazin PG (1958) The stability of a shear layer in an unbounded heterogeneous inviscid fluid. J Fluid Mech 4:214–224MathSciNetCrossRef
Zurück zum Zitat Guin MM, Kato H, Yamaguchi H, Maeda M, Miyanaga M (1996) Reduction of skin friction by microbubbles and its relation with near-wall bubble concentration in a channel. J Mar Sci Technol 1:241–254CrossRef Guin MM, Kato H, Yamaguchi H, Maeda M, Miyanaga M (1996) Reduction of skin friction by microbubbles and its relation with near-wall bubble concentration in a channel. J Mar Sci Technol 1:241–254CrossRef
Zurück zum Zitat Helmholtz HV (1868) On discontinuous movements of fluids. Philos Mag 36:337–346,CrossRef Helmholtz HV (1868) On discontinuous movements of fluids. Philos Mag 36:337–346,CrossRef
Zurück zum Zitat Kelvin L (1871) Hydrokinetic solutions and observations. Philos Mag 42:362–377CrossRef Kelvin L (1871) Hydrokinetic solutions and observations. Philos Mag 42:362–377CrossRef
Zurück zum Zitat Kitagawa A, Sugiyama K, Murai Y (2004) Experimental detection of bubble–bubble interactions in a wall-sliding bubble swarm. Int J Multiph Flow 30:1213–1234CrossRef Kitagawa A, Sugiyama K, Murai Y (2004) Experimental detection of bubble–bubble interactions in a wall-sliding bubble swarm. Int J Multiph Flow 30:1213–1234CrossRef
Zurück zum Zitat Kodama Y, Kakugawa A, Takahashi T, Kawashima H (2000) Experimental study on microbubbles and their applicability to ships for skin friction reduction. Int J Heat Fluid Flow 21:582–588CrossRef Kodama Y, Kakugawa A, Takahashi T, Kawashima H (2000) Experimental study on microbubbles and their applicability to ships for skin friction reduction. Int J Heat Fluid Flow 21:582–588CrossRef
Zurück zum Zitat Kodama Y, Hinatsu M, Hori T, Kawashima H, Takeshi H, Makino M, Ohnawa M, Sanada Y, Murai Y, Ohta S (2008) A full-scale air lubrication experiment using a large cement carrier for energy saving (result and analysis). Jpn Soc Nav Archit Ocean Eng 6:163–166 (in Japanese) Kodama Y, Hinatsu M, Hori T, Kawashima H, Takeshi H, Makino M, Ohnawa M, Sanada Y, Murai Y, Ohta S (2008) A full-scale air lubrication experiment using a large cement carrier for energy saving (result and analysis). Jpn Soc Nav Archit Ocean Eng 6:163–166 (in Japanese)
Zurück zum Zitat Kumagai I, Takahashi Y, Murai Y (2015) A new power-saving device for air bubble generation using a hydrofoil for reducing ship drag: theory, experiments, and applications to ships. Ocean Eng 95:183–194CrossRef Kumagai I, Takahashi Y, Murai Y (2015) A new power-saving device for air bubble generation using a hydrofoil for reducing ship drag: theory, experiments, and applications to ships. Ocean Eng 95:183–194CrossRef
Zurück zum Zitat McCormick ME, Bhattachayya R (1973) Drag reduction of a submersible hull by electrolysis. Nav Eng J 85:11–16CrossRef McCormick ME, Bhattachayya R (1973) Drag reduction of a submersible hull by electrolysis. Nav Eng J 85:11–16CrossRef
Zurück zum Zitat Moriguchi Y, Kato H (2002) Influence of microbubble diameter and distribution on frictional resistance reduction. J Mar Sci Technol 7:79–85CrossRef Moriguchi Y, Kato H (2002) Influence of microbubble diameter and distribution on frictional resistance reduction. J Mar Sci Technol 7:79–85CrossRef
Zurück zum Zitat Murai Y (2014) Frictional drag reduction by bubble injection. Exp Fluids 55:1773CrossRef Murai Y (2014) Frictional drag reduction by bubble injection. Exp Fluids 55:1773CrossRef
Zurück zum Zitat Murai Y, Fukuda H, Oishi Y, Kodama Y, Yamamoto F (2007) Skin friction reduction by large air bubbles in a horizontal channel flow. Int J Multiph Flow 33:147–163CrossRef Murai Y, Fukuda H, Oishi Y, Kodama Y, Yamamoto F (2007) Skin friction reduction by large air bubbles in a horizontal channel flow. Int J Multiph Flow 33:147–163CrossRef
Zurück zum Zitat Oishi Y, Tasaka Y, Murai Y, Takeda Y (2009) Frictional drag reduction by wavy advection of deformable bubbles. J Phys Conf Ser 147:012020CrossRef Oishi Y, Tasaka Y, Murai Y, Takeda Y (2009) Frictional drag reduction by wavy advection of deformable bubbles. J Phys Conf Ser 147:012020CrossRef
Zurück zum Zitat Park HJ, Tasaka Y, Murai Y, Oishi Y (2014) Vortical structures swept by a bubble swarm in turbulent boundary layers. Chem Eng Sci 116:486–496CrossRef Park HJ, Tasaka Y, Murai Y, Oishi Y (2014) Vortical structures swept by a bubble swarm in turbulent boundary layers. Chem Eng Sci 116:486–496CrossRef
Zurück zum Zitat Park HJ, Tasaka Y, Oishi Y, Murai Y (2015) Drag reduction promoted by repetitive bubble injection in turbulent channel flows. Int J Multiph Flow 75:12–25CrossRef Park HJ, Tasaka Y, Oishi Y, Murai Y (2015) Drag reduction promoted by repetitive bubble injection in turbulent channel flows. Int J Multiph Flow 75:12–25CrossRef
Zurück zum Zitat Park HJ, Oishi Y, Tasaka Y, Murai Y (2016) Void waves propagating in the bubbly two-phase turbulent boundary layer beneath a flat-bottom model ship during drag reduction. Exp Fluids 57:178CrossRef Park HJ, Oishi Y, Tasaka Y, Murai Y (2016) Void waves propagating in the bubbly two-phase turbulent boundary layer beneath a flat-bottom model ship during drag reduction. Exp Fluids 57:178CrossRef
Zurück zum Zitat Qin S, Chu N, Yao Y, Liu J, Huang B, Wu D (2017) Stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection. Phys Fluids 29:037103CrossRef Qin S, Chu N, Yao Y, Liu J, Huang B, Wu D (2017) Stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection. Phys Fluids 29:037103CrossRef
Zurück zum Zitat Sanders WC, Winkel ES, Dowling DR, Perlin M, Ceccio SL (2006) Bubble friction drag reduction in a high-Reynolds-number flat-plate turbulent boundary layer. J Fluid Mech 552:353–380CrossRef Sanders WC, Winkel ES, Dowling DR, Perlin M, Ceccio SL (2006) Bubble friction drag reduction in a high-Reynolds-number flat-plate turbulent boundary layer. J Fluid Mech 552:353–380CrossRef
Zurück zum Zitat Schbauer GB, Scramstad HK (1947) Laminar boundary layer oscillation and stability of laminar flow. J Aero Sci 14:69–78CrossRef Schbauer GB, Scramstad HK (1947) Laminar boundary layer oscillation and stability of laminar flow. J Aero Sci 14:69–78CrossRef
Zurück zum Zitat Schlichting H (1979) Boundary-layer theory, 7th edn. McGraw-Hill Higher Education, New YorkMATH Schlichting H (1979) Boundary-layer theory, 7th edn. McGraw-Hill Higher Education, New YorkMATH
Zurück zum Zitat Takagi S, Matsumoto Y (2010) Surfactant effects on bubble motion and bubbly flows. Annu Rev Fluid Mech 43:615–636CrossRef Takagi S, Matsumoto Y (2010) Surfactant effects on bubble motion and bubbly flows. Annu Rev Fluid Mech 43:615–636CrossRef
Metadaten
Titel
Bubbly drag reduction accompanied by void wave generation inside turbulent boundary layers
verfasst von
Hyun Jin Park
Yuji Tasaka
Yuichi Murai
Publikationsdatum
01.11.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 11/2018
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-018-2621-1

Weitere Artikel der Ausgabe 11/2018

Experiments in Fluids 11/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.