Skip to main content
Erschienen in: New Generation Computing 1/2021

22.10.2020

Physical Zero-Knowledge Proof for Numberlink Puzzle and k Vertex-Disjoint Paths Problem

verfasst von: Suthee Ruangwises, Toshiya Itoh

Erschienen in: New Generation Computing | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Numberlink is a logic puzzle with an objective to connect all pairs of cells with the same number by non-crossing paths in a rectangular grid. In this paper, we propose a physical protocol of zero-knowledge proof for Numberlink using a deck of cards, which allows a prover to convince a verifier that he/she knows a solution without revealing it. In particular, the protocol shows how to physically count the number of elements in a list that are equal to a given secret value without revealing that value, the positions of elements in the list that are equal to it, or the value of any other element in the list. Finally, we show that our protocol can be modified to verify a solution of the well-known k vertex-disjoint paths problem, both the undirected and directed settings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Step 5 is not necessary when verifying the last cell in the grid.
 
Literatur
1.
Zurück zum Zitat Adcock, A., Demaine, E.D., Demaine, M.L., O’Brien, M.P., Reidl, F., Villaamil, F.S., Sullivan, B.D.: Zig-zag numberlink is NP-complete. J. Inf. Process. 23(3), 239–245 (2015) Adcock, A., Demaine, E.D., Demaine, M.L., O’Brien, M.P., Reidl, F., Villaamil, F.S., Sullivan, B.D.: Zig-zag numberlink is NP-complete. J. Inf. Process. 23(3), 239–245 (2015)
2.
Zurück zum Zitat Bultel, X., Dreier, J., Dumas, J.-G., Lafourcade, P.: Physical zero-knowledge proofs for Akari, Takuzu, Kakuro and KenKen. In: Proceedings of the 8th International Conference on Fun with Algorithms (FUN), pp. 8:1–8:20 (2016) Bultel, X., Dreier, J., Dumas, J.-G., Lafourcade, P.: Physical zero-knowledge proofs for Akari, Takuzu, Kakuro and KenKen. In: Proceedings of the 8th International Conference on Fun with Algorithms (FUN), pp. 8:1–8:20 (2016)
3.
Zurück zum Zitat Bultel, X., Dreier, J., Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Nagao, A., Sasaki, T., Shinagawa, K., Sone, H.: Physical zero-knowledge proof for Makaro. In: Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), pp. 111–125 (2018) Bultel, X., Dreier, J., Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Nagao, A., Sasaki, T., Shinagawa, K., Sone, H.: Physical zero-knowledge proof for Makaro. In: Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), pp. 111–125 (2018)
4.
Zurück zum Zitat Chien, Y.-F., Hon, W.-K.: Cryptographic and physical zero-knowledge proof: from Sudoku to Nonogram. In: Proceedings of the 5th International Conference on Fun with Algorithms (FUN), pp. 102–112 (2010) Chien, Y.-F., Hon, W.-K.: Cryptographic and physical zero-knowledge proof: from Sudoku to Nonogram. In: Proceedings of the 5th International Conference on Fun with Algorithms (FUN), pp. 102–112 (2010)
5.
Zurück zum Zitat Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: Interactive physical zero-knowledge proof for Norinori. In: Proceedings of the 25th International Computing and Combinatorics Conference (COCOON), pp. 166–177 (2019) Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: Interactive physical zero-knowledge proof for Norinori. In: Proceedings of the 25th International Computing and Combinatorics Conference (COCOON), pp. 166–177 (2019)
6.
Zurück zum Zitat Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism problem. Theoret. Comput. Sci. 10(2), 111–121 (1980)MathSciNetCrossRef Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism problem. Theoret. Comput. Sci. 10(2), 111–121 (1980)MathSciNetCrossRef
7.
Zurück zum Zitat Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design. J. ACM 38(3), 691–729 (1991)CrossRef Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design. J. ACM 38(3), 691–729 (1991)CrossRef
8.
Zurück zum Zitat Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)MathSciNetCrossRef Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)MathSciNetCrossRef
10.
Zurück zum Zitat Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical zero-knowledge proof systems for solutions of sudoku puzzles. In: Proceedings of the 4th International Conference on Fun with Algorithms (FUN), pp. 166–182 (2007) Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical zero-knowledge proof systems for solutions of sudoku puzzles. In: Proceedings of the 4th International Conference on Fun with Algorithms (FUN), pp. 166–182 (2007)
11.
Zurück zum Zitat Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure grouping protocol using a deck of cards. In: Proceedings of the 10th International Conference on Information Theoretic Security (ICITS), pp. 135–152 (2017) Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure grouping protocol using a deck of cards. In: Proceedings of the 10th International Conference on Information Theoretic Security (ICITS), pp. 135–152 (2017)
12.
Zurück zum Zitat Ibaraki, T., Manabe, Y.: A more efficient card-based protocol for generating a random permutation without fixed points. In: Proceedings of the 3rd International Conference on Mathematics and Computers in Sciences and Industry (MCSI), pp. 252–257 (2016) Ibaraki, T., Manabe, Y.: A more efficient card-based protocol for generating a random permutation without fixed points. In: Proceedings of the 3rd International Conference on Mathematics and Computers in Sciences and Industry (MCSI), pp. 252–257 (2016)
13.
Zurück zum Zitat Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a hidden random permutation without fixed points. In : Proceedings of the 14th International Conference on Unconventional Computation and Natural Computation (UCNC), pp. 215–226 (2015) Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a hidden random permutation without fixed points. In : Proceedings of the 14th International Conference on Unconventional Computation and Natural Computation (UCNC), pp. 215–226 (2015)
14.
Zurück zum Zitat Karp, R.M.: On the computational complexity of combinatorial problems. Networks 5(1), 45–68 (1975)CrossRef Karp, R.M.: On the computational complexity of combinatorial problems. Networks 5(1), 45–68 (1975)CrossRef
15.
Zurück zum Zitat Kotsuma, K., Takenaga, Y.: NP-completeness and enumeration of number link puzzle. IEICE Tech. Rep. 109(465), 1–7 (2010) Kotsuma, K., Takenaga, Y.: NP-completeness and enumeration of number link puzzle. IEICE Tech. Rep. 109(465), 1–7 (2010)
16.
Zurück zum Zitat Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: A Physical ZKP for slitherlink: how to perform physical topology-preserving computation. In: Proceedings of the 15th International Conference on Information Security Practice and Experience (ISPEC), pp. 135–151 (2019) Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: A Physical ZKP for slitherlink: how to perform physical topology-preserving computation. In: Proceedings of the 15th International Conference on Information Security Practice and Experience (ISPEC), pp. 135–151 (2019)
17.
Zurück zum Zitat Lynch, J.F.: The equivalence of theorem proving and the interconnection problem. ACM SIGDA Newsl. 5(3), 31–36 (1975)CrossRef Lynch, J.F.: The equivalence of theorem proving and the interconnection problem. ACM SIGDA Newsl. 5(3), 31–36 (1975)CrossRef
18.
Zurück zum Zitat Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge proof for Kakuro. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E102.A(9), 1072–1078 (2019)CrossRef Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge proof for Kakuro. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E102.A(9), 1072–1078 (2019)CrossRef
20.
Zurück zum Zitat Robertson, N., Seymour, P.D.: Disjoint paths— a survey. SIAM J. Algebr. Discret. Methods 6(2), 300–305 (1985)MathSciNetCrossRef Robertson, N., Seymour, P.D.: Disjoint paths— a survey. SIAM J. Algebr. Discret. Methods 6(2), 300–305 (1985)MathSciNetCrossRef
21.
Zurück zum Zitat Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for numberlink. In: Proceedings of the 10th International Conference on Fun with Algorithms (FUN), pp. 22:1–22:11 (2020) Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for numberlink. In: Proceedings of the 10th International Conference on Fun with Algorithms (FUN), pp. 22:1–22:11 (2020)
22.
Zurück zum Zitat Sasaki, T., Mizuki, T., Sone, H.: Card-based zero-knowledge proof for sudoku. In: Proceedings of the 9th International Conference on Fun with Algorithms (FUN), pp. 29:1–29:10 (2018) Sasaki, T., Mizuki, T., Sone, H.: Card-based zero-knowledge proof for sudoku. In: Proceedings of the 9th International Conference on Fun with Algorithms (FUN), pp. 29:1–29:10 (2018)
23.
Zurück zum Zitat Shinagawa, K., Mizuki, T., Schuldt, J.C.N., Nuida, K., Kanayama, N., Nishide, T., Hanaoka, G., Okamoto, E.: Multi-party computation with small shuffle complexity using regular polygon cards. In: Proceedings of the 9th International Conference on Provable Security (ProvSec), pp. 127–146 (2015) Shinagawa, K., Mizuki, T., Schuldt, J.C.N., Nuida, K., Kanayama, N., Nishide, T., Hanaoka, G., Okamoto, E.: Multi-party computation with small shuffle complexity using regular polygon cards. In: Proceedings of the 9th International Conference on Provable Security (ProvSec), pp. 127–146 (2015)
Metadaten
Titel
Physical Zero-Knowledge Proof for Numberlink Puzzle and k Vertex-Disjoint Paths Problem
verfasst von
Suthee Ruangwises
Toshiya Itoh
Publikationsdatum
22.10.2020
Verlag
Ohmsha
Erschienen in
New Generation Computing / Ausgabe 1/2021
Print ISSN: 0288-3635
Elektronische ISSN: 1882-7055
DOI
https://doi.org/10.1007/s00354-020-00114-y

Weitere Artikel der Ausgabe 1/2021

New Generation Computing 1/2021 Zur Ausgabe