Skip to main content
Log in

Visual ecology of flies with particular reference to colour vision and colour preferences

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The visual ecology of flies is outstanding among insects due to a combination of specific attributes. Flies’ compound eyes possess an open rhabdom and thus separate rhabdomeres in each ommatidium assigned to two visual pathways. The highly sensitive, monovariant neural superposition system is based on the excitation of the peripheral rhabdomeres of the retinula cells R1–6 and controls optomotor reactions. The two forms of central rhabdomeres of R7/8 retinula cells in each ommatidium build up a system with four photoreceptors sensitive in different wavelength ranges and thought to account for colour vision. Evidence from wavelength discrimination tests suggests that all colour stimuli are assigned to one of just four colour categories, but cooperation of the two pathways is also evident. Flies use colour cues for various behavioural reactions such as flower visitation, proboscis extension, host finding, and egg deposition. Direct evidence for colour vision, the ability to discriminate colours according to spectral shape but independent of intensity, has been demonstrated for few fly species only. Indirect evidence for colour vision provided from electrophysiological recordings of the spectral sensitivity of photoreceptors and opsin genes indicates similar requisites in various flies; the flies’ responses to coloured targets, however, are much more diverse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allan SA, Day JF, Edman JD (1987) Visual ecology of biting flies. Annu Rev Entomol 32:297–316

    CAS  PubMed  Google Scholar 

  • Angioy A, Stensmyr M, Urru I, Puliafito M, Collu I, Hansson B (2004) Function of the heater: the dead horse arum revisited. Proc R Soc B 271:13–15

    Google Scholar 

  • Arnold SEJ, Savolainen V, Chittka L (2009) Flower colours along an alpine altitude gradient, seen through the eyes of fly and bee pollinators. Arthropod Plant Interact 3:27–43

    Google Scholar 

  • Autrum H, Stumpf H (1953) Elektrophysiologische Untersuchungen über das Farbensehen von Calliphora. Z Vergl Physiol 35:71–104

    Google Scholar 

  • Beaman RS, Decker PJ, Beaman JH (1988) Pollination of Rafflesia (Rafflesiaceae). Am J Bot 75:1148–1162

    Google Scholar 

  • Beersma DGM, Stavenga DG, Kuiper JW (1977) Retinal lattice, visual field and binocularities in flies. J Comp Physiol 119:207–220

    Google Scholar 

  • Bernard GD (1971) Evidence for visual function of corneal interference filters. J Insect Physiol 17:2287–2300

    CAS  PubMed  Google Scholar 

  • Bernard GD, Miller WH (1968) Interference filters in the corneas of Diptera. Invest Ophthalmol 7:416–434

    CAS  PubMed  Google Scholar 

  • Bishop LG (1974) An ultraviolet photoreceptor in a dipteran compound eye. J Comp Physiol 91:267–275

    Google Scholar 

  • Böhni R, Riesgo-Escovar J, Oldham S, Brogiolo W, Stocker H, Andruss BF, Beckingham K, Hafen E (1999) Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 97:865–875

    PubMed  Google Scholar 

  • Briscoe A, Chittka L (2001) The evolution of colour vision in insects. Annu Rev Entomol 46:471–510

    CAS  PubMed  Google Scholar 

  • Burton BG, Laughlin SB (2003) Neural images of pursuit targets in the photoreceptor arrays of male and female houseflies Musca domestica. J Exp Biol 206:3963–3977

    PubMed  Google Scholar 

  • Campbell JW, Hanula JL (2007) Efficiency of Malaise traps and colored pan traps for collecting flower visiting insects from three forested ecosystems. Insect Conserv 11:399–408

    Google Scholar 

  • Campbell DR, Bischoff LJM, Robertson AW (2010) Flower color influences insect visitation in alpine New Zealand. Ecology 91:2638–2649

    PubMed  Google Scholar 

  • Chittka L (1992) The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. J Comp Physiol A 170:533–545

    Google Scholar 

  • Crossley R (1988) Mating behaviour of Liancalus virens (Scop.), (Dolichopodidae). Dipter Dig 1:45–46

    Google Scholar 

  • de Buck N (1990) Bloembezoek en bestuivingsecologie van zweefvliegen (Diptera, Syrphidae) in het bijzonder voor België. Studiedocumenten van het K.B.I.N

  • Defrize J, Théry M, Casas J (2010) Background colour matching by a crab spider in the field: a community sensory ecology perspective. J Exp Biol 213:1425–1435

    PubMed  Google Scholar 

  • Dinkel T, Lunau K (2001) How drone flies (Eristalis tenax L, Syrphidae, Diptera) use floral guides to locate food sources. J Insect Physiol 47:1111–1118

    CAS  PubMed  Google Scholar 

  • Douglass JK, Strausfeld NJ (1996) Visual motion-detection circuits in flies: parallel direction- and non-direction-sensitive pathways between the medulla and lobula plate. J Neurosci 16:4551–4562

    CAS  PubMed  Google Scholar 

  • Dyer AG, Chittka L (2004) Fine colour discrimination requires differential conditioning in bumblebees. Naturwissenschaften 91:224–227

    CAS  PubMed  Google Scholar 

  • Egelhaaf M, Borst A (1993) A look into the cockpit of the fly: visual orientation, algorithms, and identified neurons. J Neurosci 13:4563–4574

    CAS  PubMed  Google Scholar 

  • Egri Á, Blahó M, Kriska G, Farkas R, Gyurkovszky M, Åkesson S, Horváth G (2012) Polarotactic tabanids find striped patterns with brightness and/or polarization modulation least attractive: an advantage of zebra stripes. J Exp Biol 215:736–745

    PubMed  Google Scholar 

  • Ellis AG, Johnson SD (2010) Floral mimicry enhances pollen export: the evolution of pollination by sexual deceit outside of the Orchidaceae. Am Nat 176:E143–E151

    PubMed  Google Scholar 

  • Endara L, Grimaldi DA, Roy BA (2010) Lord of the flies: pollination of Dracula orchids. Lankesteriana 10:1–11

    Google Scholar 

  • England NC (1964) Color preference of the horn fly, Haematobia irritans, on beef cattle. J Econ Entomol 57:371–372

    Google Scholar 

  • Fukushi T (1976) Classical conditioning to visual stimuli in the housefly, Musca domestica. J Insect Physiol 22:361–364

    Google Scholar 

  • Fukushi T (1989) Learning and discrimination of coloured papers in the walking blowfly, Lucilia cuprina. J Comp Physiol A 166:57–64

    CAS  PubMed  Google Scholar 

  • Fukushi T (1990) Colour discrimination from various shades of grey in the trained blowfly, Lucilia cuprina. J Insect Physiol 36:69–75

    Google Scholar 

  • Fukushi T (1994) Colour perception of single and mixed monochromatic lights in the blowfly Lucilia cuprina. J Comp Physiol A 175:15–22

    Google Scholar 

  • Gao S, Takemura SY, Ting CY, Huang S, Lu Z, Luan H, Rister J, Thum AS, Yang M, Hong ST, Wang JW, Odenwald WF, White BH, Meinertzhagen IA, Lee CH (2008) The neural substrate of spectral preference in Drosophila. Neuron 60:328–342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gibson G, Torr SJ (1999) Visual and olfactory responses of haematophagous Diptera to host stimuli. Med Vet Entomol 13:2–23

    CAS  PubMed  Google Scholar 

  • Goldblatt P, Manning JC (2000) Champion pollinators: long-proboscid flies in a biological system unique to southern Africa. Veld and Flora 2000:118–121

    Google Scholar 

  • Goldblatt P, Manning JC, Bernhardt P (2001) Radiation of pollination systems in Gladiolus (Iridaceae: Crocoideae) in southern Africa. Ann Missouri Bot Gard 88:713–734

    Google Scholar 

  • Goldsmith TH (1965) Do flies have a red receptor? J Gen Physiol 49:265–287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greany PD, Agee HR, Burditt AK Jr, Chambers DL (1977) Field studies on color preferences of the Caribbean fruit fly, Anastrepha suspensa (Diptera: Tephritidae). Entomol Exp Appl 21:63–70

    Google Scholar 

  • Green CH (1994) Bait methods for tsetse fly control. Adv Parasitol 34:229–291

    CAS  PubMed  Google Scholar 

  • Hansen DM, van der Niet T, Johnson SD (2012) Floral signposts: testing the significance of visual ‘nectar guides’ for pollinator behaviour and plant fitness. Proc Biol Sci 279:634–639

    PubMed Central  PubMed  Google Scholar 

  • Hardie RC (1979) Electrophysiological analysis of the fly retina. I: comparative properties of R1–6 and R7 and 8. J Comp Physiol 129:19–33

    Google Scholar 

  • Hardie RC (1985) Functional organization of the fly retina. In: Ottoson D (ed) Progress in sensory physiology, vol 5. Springer, Berlin, pp 1–79

    Google Scholar 

  • Hardie RC (1986) The photoreceptor array of the dipteran retina. Trends Neurosci 9:419–423

    Google Scholar 

  • Hardie RC, Franze K (2012) Photomechanical responses in Drosophila photoreceptors. Science 338:260–263

    CAS  PubMed  Google Scholar 

  • Hardie RC, Kirschfeld K (1983) Ultraviolet sensitivity of fly photoreceptors R7 and R8: evidence for a sensitising function. Biophys Struct Mech 9:171–180

    Google Scholar 

  • Hardie RC, Raghu P (2001) Visual transduction in Drosophila. Nature 413:186–193

    CAS  PubMed  Google Scholar 

  • Hardie RC, Franceschini N, McIntyre PD (1979) Electrophysiological analysis of the fly retina II: spectral and polarization sensitivity in R7 and R8. J Comp Physiol A 133:23–39

    Google Scholar 

  • Haslett JR (1989) Interpreting patterns of resource utilization: randomness and selectivity in pollen feeding by adult hoverflies. Oecologia 78:433–442

    Google Scholar 

  • Herrod-Hempsal W (1931) The blind-louse of the honey bee. J Minist Agric Lond 37:1176–1184

    Google Scholar 

  • Horridge GA, Mimura K, Tsukahara Y (1975) Fly photoreceptors II: spectral and polarized sensitivity in the dronefly Eristalis. Proc R Soc Lond B 190:225–237

    CAS  PubMed  Google Scholar 

  • Horváth G, Majer J, Horváth L, Szivák I, Kriska G (2008) Ventral polarization vision in tabanids: horseflies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light. Naturwissenschaften 95:1093–1100

    PubMed  Google Scholar 

  • Howard J, Blakeslee B, Laughlin SB (1987) The intracellular pupil mechanism and photoreceptor signal: noise ratios in the fly Lucila cuprina. Proc R Soc Lond B 231:415–435

    CAS  PubMed  Google Scholar 

  • Howarth B, Clee C, Edmunds M (2000) The mimicry between British Syrphidae (Diptera) and Aculeate Hymenoptera. Br J Entomol Nat Hist 13:1–40

    Google Scholar 

  • Hubel DH (1995) Eye, Brain, and Vision. WH Freeman, New York

    Google Scholar 

  • Ilse D (1949) Colour discrimination in the dronefly Eristalis tenax. Nature 163:255–256

    CAS  PubMed  Google Scholar 

  • Jersáková J, Jürgens A, Šmilauer P, Johnson SD (2012) The evolution of floral mimicry: identifying traits that visually attract pollinators. Funct Ecol 26:1381–1389

    Google Scholar 

  • Johnson SD, Midgley JJ (1997) Fly pollination of Gorteria diffusa (Asteraceae), and a possible mimetic function for dark spots on the capitulum. Am J Bot 84:429–436

    CAS  PubMed  Google Scholar 

  • Kastinger C, Weber A (2001) Bee-flies (Bombylius spp., Bombyliidae, Diptera) and the pollination of flowers. Flora 196:3–25

    Google Scholar 

  • Katsoyannos BI, Patsouras G, Vrekoussi M (1985) Effect of color hue and brightness of artificial oviposition substrates on the selection of oviposition site by Dacus oleae. Entomol Exp Appl 38:205–214

    Google Scholar 

  • Kay QON (1976) Preferential pollination of yellow-flowered morphs of Raphanus raphanistrum by Pieris and Eristalis spp. Nature 261:230–232

    Google Scholar 

  • Kelber A (2001) Receptor based models for spontaneous colour choices in flies and butterflies. Entomol Exp Appl 99:231–244

    Google Scholar 

  • Kelber A (2006) Invertebrate colour vision. In: Warrant EJ, Nilsson D-E (eds) Invertebrate vision. Cambridge University Press, Cambridge, pp 250–290

    Google Scholar 

  • Kelber A, Henze MJ (2013) Colour vision: parallel pathways intersect in Drosophila. Curr Biol 23:R4103–R4105

    Google Scholar 

  • Kelber A, Osorio D (2010) From spectral information to animal colour vision: experiments and concepts. Proc R Soc B 277:1617–1625

    PubMed Central  PubMed  Google Scholar 

  • Kevan PG (1975) Sun-tracking solar furnaces in high arctic flowers: significance for pollination and insects. Science 189:723–726

    CAS  PubMed  Google Scholar 

  • Kevan PG, Baker HG (1983) Insects as flower visitors and pollinators. Annu Rev Entomol 28:407–453

    Google Scholar 

  • Khan FU (1978) Color preference of the house fly Musca domestica nebulo. Angew Parasitol 19:187–188

    CAS  PubMed  Google Scholar 

  • Kirk WDJ (1984) Ecologically selective coloured traps. J Ecol Entomol 9:35–41

    Google Scholar 

  • Kirschfeld K, Vogt K (1986) Does retinol serve a sensitizing function in insect photoreceptors? Vision Res 11:1771–1777

    Google Scholar 

  • Kirschfeld K, Franceschini N, Minke B (1977) Evidence for a sensitising pigment in fly photoreceptors. Nature 269:386–390

    CAS  PubMed  Google Scholar 

  • Kirschfeld K, Feiler R, Hardie R, Vogt K, Franceschini N (1983) The senitizing pigment in fly photoreceptors: Properties and candidates. Biophys Struct Mech 10:81–92

    CAS  Google Scholar 

  • Kirschfeld K, Hardie R, Lenz G, Vogt K (1988) The pigment system of the photoreceptor 7 yellow in the fly, a complex photoreceptor. J Comp Physiol A 162:421–433

    CAS  Google Scholar 

  • Knoll F (1921) Bombylius fuliginosus und die Farbe der Blumen (Insekten und Blumen I). Abh K&K Zool Bot Ges 12:17–119

    Google Scholar 

  • Knoll F (1926) Insekten und Blumen. Abh Zool Bot Ges Wien 12:1–645

    Google Scholar 

  • Knüttel H, Lunau K (1997) Farbige Augen bei Insekten. Mitt Dtsch Ges Allg Angew Entomol 11:587–590

    Google Scholar 

  • Kugler H (1950) Der Blütenbesuch der Schlammfliege (Eristalomyia tenax). Z Vergl Physiol 32:328–347

    Google Scholar 

  • Land MF (1993a) Chasing and pursuit in the dolichopodid fly Poecilobothrus nobilitatus. J Comp Physiol A 173:605–613

    Google Scholar 

  • Land MF (1993b) The visual control of courtship behaviour in the fly Poecilobothrus nobilitatus. J Comp Physiol A 173:595–603

    Google Scholar 

  • Land MF, Eckert H (1985) Maps of the acute zones of fly eyes. J Comp Physiol A 156:525–538

    Google Scholar 

  • Land MF, Nilsson D-E (2002) Animal eyes. Oxford University Press, Oxford

    Google Scholar 

  • Land MF, Nilsson D-E (2006) General-purpose and special-purpose visual systems. In: Warrant EJ, Nilsson D-E (eds) Invertebrate vision. Cambridge University Press, Cambridge, pp 167–210

    Google Scholar 

  • Laubertie EA, Wratten SD, Sedcole JR (2006) The role of odour and visual cues in the pan-trap catching of hoverflies (Diptera: Syrphidae). Ann Appl Biol 148:173–178

    Google Scholar 

  • Leertouwer HL, Stavenga DG (2000) Spectral characteristics and regionalization of the eyes of Diptera, especially Tabanidae. Proc Sect Exp Appl Entomol Neth Entomol Soc 11:61–66

    Google Scholar 

  • Levinson H, Levinson A, Osterried E (2003) Orange-derived stimuli regulating oviposition in the Mediterranean fruit fly. J Appl Entomol 127:269–275

    Google Scholar 

  • Lunau K (1988) Angeborenes und erlerntes Verhalten beim Blütenbesuch von Schwebfliegen—Attrappenversuche mit Eristalis pertinax (Scopoli) (Diptera, Syrphidae). Zool Jb Physiol 92:487–499

    Google Scholar 

  • Lunau K (1995) Notes on the colour of pollen. Plant Syst Evol 198:235–252

    Google Scholar 

  • Lunau K (1996) Balzverhalten von Langbeinfliegen (Dolichopodidae; Diptera). Acta Albertina Ratisbonensia 50:49–73

    Google Scholar 

  • Lunau K (2000) The ecology and evolution of visual pollen signals. Plant Syst Evol 222:89–111

    Google Scholar 

  • Lunau K (2007) Stamens and mimic stamens as components of floral colour patterns. Bot Jahrb Syst 127:13–41

    Google Scholar 

  • Lunau K (2011) Warnen, Tarnen, Täuschen. Mimikry und Nachahmung bei Pflanze, Tier und Mensch. Primus, Darmstadt

  • Lunau K, Knüttel H (1995) Vision through coloured eyes. Naturwissenschaften 82:432–434

    CAS  PubMed  Google Scholar 

  • Lunau K, Maier EJ (1995) Innate colour preferences of flower visitors. J Comp Physiol A 177:1–19

    Google Scholar 

  • Lunau K, Wacht S (1994) Optical releasers of the innate proboscis extension in the hoverfly Eristalis tenax L. (Syrphidae, Diptera). J Comp Physiol A 174:574–579

    Google Scholar 

  • Lunau K, Wacht S (1997) Innate flower recognition in the hoverfly Eristalis tenax L. Mitt Dtsch Ges Allg Angew Entomol 11:481–484

    Google Scholar 

  • Lunau K, Hofmann N, Valentin S (2005) Response of the hoverfly species Eristalis tenax towards floral dot guides with colour transition from red to yellow (Diptera: Syrphidae). Entomol Gen 27:249–256

    Google Scholar 

  • Manning JC, Goldblatt P (1997) The Moegistorhynchus longirostris (Diptera: Nemestrinidae) pollination guild: long-tubed flowers and a specialized long-proboscid fly pollination system in southern Africa. Plant Syst Evol 206:51–69

    Google Scholar 

  • McAlpine JF (1981) Morphology and terminology—adults. In: McAlpine JF, Peterson BV, Shell GE, Teskey HJ, Vockeroth JR, Wood DM (eds) Manual of Nearctic Diptera, vol 1, Research Branch Monograph No. 27. Agriculture Canada, Hull (Quebec), Canada, pp 9–63

  • Menne D, Spatz HC (1977) Colour vision in Drosophila melanogaster. J Comp Physiol A 114:301–312

    Google Scholar 

  • Minke B, Kirschfeld K (1979) The contribution of a sensitizing pigment to the photosensitivity spectra of fly rhodopsin and metarhodopsin. J Gen Physiol 73:517–540

    CAS  PubMed  Google Scholar 

  • Morante J, Desplan C (2008) The color-vision circuit in the medulla of Drosophila. Curr Biol 18:553–565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Müller H (1881) Alpenblumen, ihre Befruchtung durch Insekten und ihre Anpassungen an dieselben. Wilhelm Engelmann, Leipzig

  • Nakagawa S, Prokopy RJ, Wong TY, Ziegler JR, Mitchell SM, Urago T, Harris EJ (1978) Visual orientation of Ceratitis capitata flies to fruit models. Entomol Exp Appl 24:193–198

    Google Scholar 

  • Nicol D, Meinertzhagen IA (1982) Regulation in the number of fly photoreceptor synapses: the effects of alterations in the number of presynaptic cells. J Comp Neurol 207:45–60

    CAS  PubMed  Google Scholar 

  • Osorio D (2007) Spam and the evolution of the fly’s eye. BioEssays 29:111–115

    PubMed  Google Scholar 

  • Paulk A, Millard SS, van Swinderen B (2013) Vision in Drosophila: seeing the world through a model’s eyes. Annu Rev Entomol 58:313–332

    CAS  PubMed  Google Scholar 

  • Paulus HF (2007) Wie Insekten-Männchen von Orchideenblüten getäuscht werden—Bestäubungstricks und Evolution in der mediterranean Ragwurzgattung Ophrys. Denisia 66:255–294

    Google Scholar 

  • Posnien N, Hopfen C, Hilbrant M, Ramos-Womack M, Murat S, Schönauer A, Herbert SL, Nunes MD, Arif S, Breuker CJ, Schlötterer C, Mitteroecker P, McGregor AP (2012) Evolution of eye morphology and rhodopsin expression in the Drosophila melanogaster species subgroup. PLoS ONE 7:e37346

    CAS  PubMed Central  PubMed  Google Scholar 

  • Proctor M, Yeo P, Lack A (1996) The natural history of pollination. Timber Press, Portland, Oregon

    Google Scholar 

  • Prokopy RJ (1968) Visual responses of apple maggot flies, Rhagoletis pomonella (Diptera: Tephritidae): Orchard studies. Entomol Exp Appl 11:403–422

    Google Scholar 

  • Prokopy RJ, Economopoulos AP, McFadden MW (1975) Attraction of wild and laboratory-cultured Dacus oleae flies to small rectangles of different hues, shades, and tints. Entomol Exp Appl 18:141–152

    Google Scholar 

  • Raine NE, Chittka L (2007) The adaptive significance of sensory bias in a foraging context: floral colour preferences in the bumblebee Bombus terrestris. PLoS ONE 2:e556

    PubMed Central  PubMed  Google Scholar 

  • Ren ZX, Li DZ, Bernhardt P, Wang H (2011) Flowers of Cypripedium fargesii (Orchidaceae) fool flat-footed flies (Platypezidae) by faking fungus-infected foliage. Proc Natl Acad Sci USA 108:7478–7480

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roebroek JGH, Stavenga DG (1990) On the effective density of the pupil mechanism of fly photoreceptors. Vis Res 30:1235–1242

    CAS  PubMed  Google Scholar 

  • Ruck P (1961) Photoreceptor cell response and flicker fusion frequency in the compound eye of the fly, Lucilia sericata (Meigen). Biol Bull 120:373–383

    Google Scholar 

  • Salcedo E, Huber A, Henrich S, Chadwell LV, Chou W-H, Paulsen R, Britt SG (1999) Blue- and green-absorbing visual pigments of Drosophila: ectopic expression and physiological characterization of the R8 photoreceptor cell-specific Rh5 and Rh6 rhodopsins. J Neurosci 19:10716–10726

    CAS  PubMed  Google Scholar 

  • Schnaitmann C, Garbers C, Wachtler T, Tanimoto H (2013) Color discrimination with broadband photoreceptors. Curr Biol 23:2375–2382

    CAS  PubMed  Google Scholar 

  • Shuttleworth A, Johnson SD (2010) The missing stink: sulphur compounds can mediate a shift between fly and wasp pollination systems. Proc R Soc Lond B 277:2811–2819

    CAS  Google Scholar 

  • Sivinski J, Pereira R (2005) Do wing markings in fruit flies (Diptera: Tephritidae) have sexual significance? Fla Entomol 88:321–324

    Google Scholar 

  • Snyder AW, Menzel R, Laughlin SB (1973) Structure and function of the fused rhabdom. J Comp Physiol 87:99–135

    Google Scholar 

  • Ssymank A (2001) Tierwelt in der Zivilisationslandschaft. Teil V. Vegetation und blütenbesuchende Insekten in der Kulturlandschaft. Schriftenreihe für Landschaftspflege und Naturschutz 64:1–513

  • Stanton ML, Snow AA, Handel SN, Bereczky J (1989) The impact of a flower-color polymorphism on mating patterns in experimental populations of wild radish (Raphanus raphanistrum L). Evolution 43:335–346

    Google Scholar 

  • Stark D, Frayer KL, Johnson MA (1979) Photopigment and receptor properties in Drosophila compound eye and ocellar receptors. Biophys Struct Mech 5:197–209

    CAS  PubMed  Google Scholar 

  • Stavenga DG (1979) Pseudopupils of compound eyes. In: Autrum H et al (eds) Handbook of sensory physiology VII/6A. Springer, Berlin, pp 357–439

    Google Scholar 

  • Stavenga DG (1992) Eye regionalization and spectral tuning of retinal pigments in insects. Trends Neurosci 15:213–218

    CAS  PubMed  Google Scholar 

  • Stavenga DG (2002) Colour in the eyes of insects. J Comp Physiol A 188:337–348

    CAS  Google Scholar 

  • Stavenga DG (2004) Angular and spectral sensitivity of fly photoreceptors. III: dependence on the pupil mechanism in the blowfly Calliphora. J Comp Physiol A 190:115–129

    CAS  Google Scholar 

  • Stavenga DG, Hardie RC (2011) Metarhodopsin control by arrestin, light-filtering screening pigments, and visual pigment turnover in invertebrate microvillar photoreceptors. J Comp Physiol A 197:227–241

    CAS  Google Scholar 

  • Steyskal GC (1949) Notes on color and pattern of eye in Diptera. I. Bull Brooklyn Entomol Soc 44:163–164

    Google Scholar 

  • Steyskal GC (1957) Notes on color and pattern of eye in Diptera. II. Bull. Brooklyn Entomol Soc 52:89–94

    Google Scholar 

  • Strausfeld NJ, Lee JK (1991) Neuronal basis for parallel visual processing in the fly. Vis Neurosci 7:13–33

    CAS  PubMed  Google Scholar 

  • Strausfeld NJ, Wunderer H (1985) Optic lobe projections of marginal ommatidia in Calliphora erythrocephala specialized for detecting polarized light. Cell Tissue Res 242:163–178

    Google Scholar 

  • Straw AD, Warrant EJ, O’Carroll DC (2006) A ‘bright zone’’ in male hoverfly (Eristalis tenax) eyes and associated faster motion detection and increased contrast sensitivity. J Exp Biol 209:4339–4354

    PubMed  Google Scholar 

  • Sutherland JP, Sullivan MS, Poppy GM (1999) The influence of floral character on the foraging behaviour of the hoverfly, Episyrphus balteatus (Degeer) (Diptera: Syrphidae). Entomol Exp Appl 93:157–164

    Google Scholar 

  • Thomas MM, Rudall PJ, Ellis AG, Savolainen V, Glover BJ (2009) Development of a complex floral trait: the pollinator-attracting petal spots of the beetle daisy, Gorteria diffusa (Asteraceae). Am J Bot 96:2184–2196

    PubMed  Google Scholar 

  • Tomlinson A (2003) Patterning the peripheral retina of the fly: decoding a gradient. Dev Cell 5:799–809

    CAS  PubMed  Google Scholar 

  • Troje N (1993) Spectral categories in the learning behaviour of blowflies. Z Naturforschg 48c:96–104

    Google Scholar 

  • Tsukahara Y, Horridge GA (1977a) Visual pigment spectra from sensitivity measurements after chromatic adaptation of single dronefly retinula cells. J Comp Physiol 114:233–251

    Google Scholar 

  • Tsukahara Y, Horridge GA (1977b) Interaction between two retinula cell types in the anterior eye of the dronefly Eristalis. J Comp Physiol 115:287–298

    Google Scholar 

  • van der Niet T, Hansen DM, Johnson SD (2011) Carrion mimicry in a South African orchid: flowers attract a narrow subset of the fly assemblage on animal carcasses. Ann Bot 107:981–992

    PubMed Central  PubMed  Google Scholar 

  • van Hateren JH, Hardie RC, Rudolph A, Laughlin SB, Stavenga DG (1989) The bright zone, a specialized dorsal eye region in the male blowfly Chrysomyia megacephala. J Comp Physiol A 164:297–308

    Google Scholar 

  • Vernon RS (1986) A spectral zone of color preference for the onion fly Delia antiqua (Diptera; Anthomyiidae), with reference to the reflective intensity of traps. Can Entomol 118:849–856

    Google Scholar 

  • Vogel S (1978) Pilzmückenblumen als Pilzmimeten. Erster Teil. Flora 168:329–366

    Google Scholar 

  • von Frisch K (1914) Der Farbensinn und Formensinn der Biene. Zool Jahrb Abt Allg Zool Physiol Tiere 35:1–88

    Google Scholar 

  • Vrdoljak SM, Samways MJ (2012) Optimising coloured pan traps to survey flower visiting insects. J Insect Conserv 16:345–354

    Google Scholar 

  • Wacht S, Lunau K, Hansen K (1996) Optical and chemical stimuli control pollen feeding in the hoverfly Eristalis tenax L. (Syrphidae, Diptera). Entomol Exp Appl 80:50–53

    Google Scholar 

  • Wall R, Fisher P (2001) Visual and olfactory cue interaction in resource-location by the blowfly, Lucilia sericata. Physiol Entomol 26:212–218

    Google Scholar 

  • Wardill TJ, List O, Li X, Dongre S, McCulloch M, Ting C-Y, O’Kane CJ, Tang S, Lee C-H, Hardie RC, Juusola M (2012) Multiple spectral inputs improve motion discrimination in the Drosophila visual system. Science 336:925–931

    CAS  PubMed  Google Scholar 

  • Warrant E, Dacke M (2011) Vision and visual navigation in nocturnal insects. Annu Rev Entomol 56:239–254

    CAS  PubMed  Google Scholar 

  • Wehner R, Labhart T (2006) Polarization vision. In: Warrant EJ, Nilsson D-E (eds) Invertebrate vision. Cambridge Univ Press, Cambridge, pp 291–348

    Google Scholar 

  • Wernet MF, Velez MM, Clark DA, Baumann-Klausener F, Brown JR, Klovstad M, Labhart T, Clandinin TR (2012) Genetic dissection reveals two separate retinal substrates for polarization vision in Drosophila. Curr Biol 22:12–20

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilkerson RC, Butler JF (1984) The Immelman turn, a pursuit maneuver used by hovering male Hybomitra hinei wrighti (Diptera: Tabanidae). Ann Entomol Soc Am 77:293–295

    Google Scholar 

  • Willmer P (2011) Pollination and floral ecology. Princeton University Press, Princeton

    Google Scholar 

  • Wyszecki G, Stiles WS (1982) Color science: concepts and methods, quantitative data and formulae. Wiley, New York

    Google Scholar 

  • Yamaguchi S, Wolf R, Desplan C, Heisenberg M (2008) Motion vision is independent of color in Drosophila. Proc Natl Acad Sci USA 105:4910–4915

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi S, Desplan C, Heisenberg M (2010) Contribution of photoreceptor subtypes to spectral wavelength preference in Drosophila. Proc Natl Acad Sci USA 107:5634–5639

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yeates DK, Wiegmann BM (1999) Congruence and controversy: toward a higher-level phylogeny of Diptera. Annu Rev Entomol 44:397–428

    CAS  PubMed  Google Scholar 

  • Yuval B (2006) Mating systems of blood-feeding flies. Annu Rev Entomol 51:413–440

    CAS  PubMed  Google Scholar 

  • Zeil J (1983) Sexual dimorphism in the visual system of flies: the free flight behaviour of male Bibionidae (Diptera). J Comp Physiol 150:379–393

    Google Scholar 

  • Zimmer M, Diestelhorst O, Lunau K (2003) Courtship in long-legged flies (Diptera: Dolichopodidae): function and evolution of signals. Behav Ecol 14:526–530

    Google Scholar 

Download references

Acknowledgments

I thank Anne Thorson for linguistic improvement, Sarah Papiorek for critical comments on the manuscript and help with the preparation of some figures, and Francismeire Telles for discussion about spectral sensitivity curves for Eristalis tenax. Two anonymous reviewers commented in a very constructive manner and helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Lunau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lunau, K. Visual ecology of flies with particular reference to colour vision and colour preferences. J Comp Physiol A 200, 497–512 (2014). https://doi.org/10.1007/s00359-014-0895-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-014-0895-1

Keywords

Navigation