Skip to main content
Log in

Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations

  • Published:
Constructive Approximation Aims and scope

Abstract

We construct a suitable B-spline representation for a family of bivariate spline functions with smoothness r≥1 and polynomial degree 3r−1. They are defined on a triangulation with Powell–Sabin refinement. The basis functions have a local support, they are nonnegative, and they form a partition of unity. The construction involves the determination of triangles that must contain a specific set of points. We further consider a number of CAGD applications. We show how to define control points and control polynomials (of degree 2r−1), and we provide an efficient and stable computation of the Bernstein–Bézier form of such splines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. de Boor, C.: B-form basics. In: Farin, G. (ed.) Geometric Modeling: Algorithms and New Trends, pp. 131–148. SIAM, Philadelphia (1987)

    Google Scholar 

  2. de Boor, C.: Multivariate piecewise polynomials. Acta Numer. 2, 65–109 (1993)

    Article  Google Scholar 

  3. Dierckx, P.: On calculating normalized Powell–Sabin B-splines. Comput. Aided Geom. Des. 15, 61–78 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Farin, G.: Triangular Bernstein–Bézier patches. Comput. Aided Geom. Des. 3, 83–127 (1986)

    Article  MathSciNet  Google Scholar 

  5. Lai, M., Schumaker, L.: Spline Functions on Triangulations. Encyclopedia of Mathematics and Its Applications, vol. 110. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  6. Maes, J., Bultheel, A.: Stable multiresolution analysis on triangles for surface compression. Electron. Trans. Numer. Anal. 25, 224–258 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Manni, C., Sablonnière, P.: Quadratic spline quasi-interpolants on Powell–Sabin partitions. Adv. Comput. Math. 26, 283–304 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Powell, M., Sabin, M.: Piecewise quadratic approximations on triangles. ACM Trans. Math. Softw. 3, 316–325 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ramshaw, L.: Blossoming: a connect-the-dots approach to splines. Tech. Rep. 19, Digital Systems Research Center (1987)

  10. Sablonnière, P.: Composite finite elements of class C k. J. Comput. Appl. Math. 12&13, 541–550 (1985)

    Article  Google Scholar 

  11. Sablonnière, P.: Error bounds for Hermite interpolation by quadratic splines on an α-triangulation. IMA J. Numer. Anal. 7, 495–508 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Seidel, H.: An introduction to polar forms. IEEE Comput. Graph. Appl. 13, 38–46 (1993)

    Article  Google Scholar 

  13. Speleers, H.: A normalized basis for quintic Powell–Sabin splines. Comput. Aided Geom. Des. 27, 438–457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Speleers, H.: A normalized basis for reduced Clough–Tocher splines. Comput. Aided Geom. Des. 27, 700–712 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Speleers, H.: On multivariate polynomials in Bernstein–Bézier form and tensor algebra. J. Comput. Appl. Math. 236, 589–599 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Speleers, H., Dierckx, P., Vandewalle, S.: Numerical solution of partial differential equations with Powell–Sabin splines. J. Comput. Appl. Math. 189, 643–659 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Speleers, H., Dierckx, P., Vandewalle, S.: Quasi-hierarchical Powell–Sabin B-splines. Comput. Aided Geom. Des. 26, 174–191 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Speleers.

Additional information

Communicated by Larry Schumaker.

H. Speleers is a Postdoctoral Fellow of the Research Foundation Flanders (Belgium).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speleers, H. Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations. Constr Approx 37, 41–72 (2013). https://doi.org/10.1007/s00365-011-9151-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-011-9151-x

Keywords

Mathematics Subject Classification (2000)

Navigation