Skip to main content
Erschienen in: Engineering with Computers 4/2017

25.03.2017 | Original Article

The local radial point interpolation meshless method for solving Maxwell equations

verfasst von: Mehdi Dehghan, Mina Haghjoo-Saniji

Erschienen in: Engineering with Computers | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Maxwell equations are basic equations of electromagnetic. In this paper we employed ADI–LRPIM (alternative direction implicit method is applied for approximating the time variable and the local radial point interpolation meshless method is used for space variable) to solve the two-dimensional time dependent Maxwell equations. This method consists of two stages for each time step implemented in alternative directions which are simple in computations. Local radial point interpolation method is a type of meshless method which uses a set of nodes scattered within the domain of the problem as well as a set of nodes scattered on the boundaries of the domain instead of using a predefined mesh to represent the problem domain and its boundaries, this feature makes, LRPIM to be flexible. Also it produces acceptable results for solving many partial differential equations. The proposed method is accurate and efficient, these features are illustrated by solving numerical examples in transverse magnetic and transverse electric fields. We used a kind of finite difference scheme for approximation of derivative terms in main relations to reduce errors and computational cost and eliminate integrals of weak form on internal boundaries by suitable selection of test function.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abbasbandy S, Naz R, Hayat T, Alsaedi A (2014) Numerical and analytical solutions for Falkner–Skan flow of MHD Maxwell fluid. Appl Math Comput 242(1):569–575MathSciNetMATH Abbasbandy S, Naz R, Hayat T, Alsaedi A (2014) Numerical and analytical solutions for Falkner–Skan flow of MHD Maxwell fluid. Appl Math Comput 242(1):569–575MathSciNetMATH
2.
Zurück zum Zitat Abbaszadeh M, Dehghan M (2015) A meshless numerical procedure for solving fractional reaction subdiffusion model via a new combination of alternating direction implicit (ADI) approach and interpolating element free Galerkin (EFG) method. Comput Math Appl 70:2493–2512MathSciNetCrossRef Abbaszadeh M, Dehghan M (2015) A meshless numerical procedure for solving fractional reaction subdiffusion model via a new combination of alternating direction implicit (ADI) approach and interpolating element free Galerkin (EFG) method. Comput Math Appl 70:2493–2512MathSciNetCrossRef
3.
Zurück zum Zitat Ala G, Francomano E (2015) Numerical investigations of an implicit leapfrog time-domain meshless method. J Sci Comput 62:898–912MathSciNetCrossRefMATH Ala G, Francomano E (2015) Numerical investigations of an implicit leapfrog time-domain meshless method. J Sci Comput 62:898–912MathSciNetCrossRefMATH
4.
Zurück zum Zitat Ala G, Francomano E (2012) An improved smoothed particle electromagnetics method in 3D time domain simulations. Int J Numer Modell Electron Netw Dev Fields 25:325–337CrossRef Ala G, Francomano E (2012) An improved smoothed particle electromagnetics method in 3D time domain simulations. Int J Numer Modell Electron Netw Dev Fields 25:325–337CrossRef
5.
Zurück zum Zitat Ala G, Francomano E, Ganci S (2015) Unconditionally stable meshless integration of time-domain Maxwell’s curl equations. Appl Math Comput 255:157–164MathSciNetMATH Ala G, Francomano E, Ganci S (2015) Unconditionally stable meshless integration of time-domain Maxwell’s curl equations. Appl Math Comput 255:157–164MathSciNetMATH
6.
Zurück zum Zitat Binns KJ, Lawrenson PJ, Trowbridge CW (1993) The analytical and numerical solution of electric and magnetic fields. Wiley, USA Binns KJ, Lawrenson PJ, Trowbridge CW (1993) The analytical and numerical solution of electric and magnetic fields. Wiley, USA
7.
Zurück zum Zitat Buhmann MD (2003) Radial basis functions: theory and implementations. Cambridge University Press, CambridgeCrossRefMATH Buhmann MD (2003) Radial basis functions: theory and implementations. Cambridge University Press, CambridgeCrossRefMATH
8.
Zurück zum Zitat Burden RL, Faires JD (2010) Numerical analysis. Cengage Learn Burden RL, Faires JD (2010) Numerical analysis. Cengage Learn
9.
Zurück zum Zitat Chari MVK, Silvester PP (1980) Finite element in electrical and magnetic field problems. Wiley, USA Chari MVK, Silvester PP (1980) Finite element in electrical and magnetic field problems. Wiley, USA
10.
Zurück zum Zitat Chatterjee R (2003) Antenna theory and practice, vol 1996(19). New Age International, India Chatterjee R (2003) Antenna theory and practice, vol 1996(19). New Age International, India
11.
Zurück zum Zitat Dehghan M (2002) A new ADI technique for two-dimensional parabolic equation with an integral condition. Comput Math Appl 43:1477–1488MathSciNetCrossRefMATH Dehghan M (2002) A new ADI technique for two-dimensional parabolic equation with an integral condition. Comput Math Appl 43:1477–1488MathSciNetCrossRefMATH
12.
Zurück zum Zitat Dehghan M, Abbaszadeh M, Mohebbi A (2015) A meshless technique based on the local radial basis functions collocation method for solving parabolic–parabolic Patlak–Keller–Segel chemotaxis model. Eng Anal Bound Elem 56:129–144MathSciNetCrossRef Dehghan M, Abbaszadeh M, Mohebbi A (2015) A meshless technique based on the local radial basis functions collocation method for solving parabolic–parabolic Patlak–Keller–Segel chemotaxis model. Eng Anal Bound Elem 56:129–144MathSciNetCrossRef
13.
Zurück zum Zitat Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phys Commun 181:772–786MathSciNetCrossRefMATH Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phys Commun 181:772–786MathSciNetCrossRefMATH
14.
Zurück zum Zitat Dehghan M, Ghesmati A (2010) Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation. Eng Anal Bound Elem 34:324–336MathSciNetCrossRefMATH Dehghan M, Ghesmati A (2010) Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation. Eng Anal Bound Elem 34:324–336MathSciNetCrossRefMATH
15.
Zurück zum Zitat Dehghan M, Salehi R (2014) A meshless local Petrov–Galerkin method for the time-dependent Maxwell equations. J Comput Appl Math 268:93–110MathSciNetCrossRefMATH Dehghan M, Salehi R (2014) A meshless local Petrov–Galerkin method for the time-dependent Maxwell equations. J Comput Appl Math 268:93–110MathSciNetCrossRefMATH
16.
Zurück zum Zitat Dehghan M (2006) Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math Comput Simul 71:16–30MathSciNetCrossRefMATH Dehghan M (2006) Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math Comput Simul 71:16–30MathSciNetCrossRefMATH
17.
Zurück zum Zitat Fasshauer G (2007) Meshfree approximation methods with Matlab. World Scientific, DaverseCrossRefMATH Fasshauer G (2007) Meshfree approximation methods with Matlab. World Scientific, DaverseCrossRefMATH
18.
19.
Zurück zum Zitat Forsythe GE, Wasow WR (1960) Finite difference method for partial differential equations. Wiley, USAMATH Forsythe GE, Wasow WR (1960) Finite difference method for partial differential equations. Wiley, USAMATH
20.
Zurück zum Zitat Gao L, Zhang B, Liang D (2007) The splitting finite-difference time-domain methods for Maxwell equations in two dimensions. J Comput Appl Math 205:207–230MathSciNetCrossRefMATH Gao L, Zhang B, Liang D (2007) The splitting finite-difference time-domain methods for Maxwell equations in two dimensions. J Comput Appl Math 205:207–230MathSciNetCrossRefMATH
21.
22.
Zurück zum Zitat Harrington RF (1993) Field computation by moment method. Oxford University Press, USACrossRef Harrington RF (1993) Field computation by moment method. Oxford University Press, USACrossRef
23.
Zurück zum Zitat Hayat T, Abbas Z, Sajid M (2006) Series solution for the upper-convected Maxwell fluid over a porous stretching plate. Phys Lett A 358(56):396–403CrossRefMATH Hayat T, Abbas Z, Sajid M (2006) Series solution for the upper-convected Maxwell fluid over a porous stretching plate. Phys Lett A 358(56):396–403CrossRefMATH
24.
Zurück zum Zitat Hosseinzadeh H, Dehghan M, Mirzaei D (2013) The boundary elements method for magneto-hydrodynamic (MHD) channel flows at high Hartmann number. Appl Math Modell 37:2337–2351MathSciNetCrossRefMATH Hosseinzadeh H, Dehghan M, Mirzaei D (2013) The boundary elements method for magneto-hydrodynamic (MHD) channel flows at high Hartmann number. Appl Math Modell 37:2337–2351MathSciNetCrossRefMATH
25.
Zurück zum Zitat Ilati M, Dehghan M (2016) Remediation of contaminated groundwater by meshless local weak forms. Comput Math Appl 72:2408–2416MathSciNetCrossRefMATH Ilati M, Dehghan M (2016) Remediation of contaminated groundwater by meshless local weak forms. Comput Math Appl 72:2408–2416MathSciNetCrossRefMATH
26.
27.
Zurück zum Zitat Kaufmann T, Fumeaux C, Vahldieck R (2008) The meshless radial point interpolation method for time-domain electromagnetics. Dig IEEE MTT-S Int Microw Symp 61:15–20 Kaufmann T, Fumeaux C, Vahldieck R (2008) The meshless radial point interpolation method for time-domain electromagnetics. Dig IEEE MTT-S Int Microw Symp 61:15–20
28.
Zurück zum Zitat Kaufmann T, Yu Y, Engström C, Chen Z, Fumeaux C (2012) Recent developments of the meshless radial point interpolation method for time-domain electromagnetics. Int J Numer Modell Electron Netw Dev Fields 25:468–489CrossRef Kaufmann T, Yu Y, Engström C, Chen Z, Fumeaux C (2012) Recent developments of the meshless radial point interpolation method for time-domain electromagnetics. Int J Numer Modell Electron Netw Dev Fields 25:468–489CrossRef
29.
Zurück zum Zitat Kopriva DA (2009) Implementing Spectral methods for partial differential equations: algorithms for scientists and engineers. Springer, The NetherlandsCrossRefMATH Kopriva DA (2009) Implementing Spectral methods for partial differential equations: algorithms for scientists and engineers. Springer, The NetherlandsCrossRefMATH
30.
Zurück zum Zitat Lebedev AS, Fedoruk MP, Shtyrina OV (2006) Finite-volume algorithm for solving the time-dependent Maxwell equations on unstructured meshes. Comput Math Math Phys 46:1219–1233MathSciNetCrossRef Lebedev AS, Fedoruk MP, Shtyrina OV (2006) Finite-volume algorithm for solving the time-dependent Maxwell equations on unstructured meshes. Comput Math Math Phys 46:1219–1233MathSciNetCrossRef
31.
Zurück zum Zitat Lee J, Fornberg B (2004) Some unconditionally stable time stepping methods for the 3D Maxwell’s equa tions. J Comput Appl Math 166:497–523MathSciNetCrossRefMATH Lee J, Fornberg B (2004) Some unconditionally stable time stepping methods for the 3D Maxwell’s equa tions. J Comput Appl Math 166:497–523MathSciNetCrossRefMATH
32.
Zurück zum Zitat Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, The Netherlands Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, The Netherlands
33.
Zurück zum Zitat Liu GR, Zhang GY, Gu YT, Wang YY (2005) A meshfree radial point interpolation method (RPIM) for three-dimensional solids. Comput Mech 36:421–430MathSciNetCrossRefMATH Liu GR, Zhang GY, Gu YT, Wang YY (2005) A meshfree radial point interpolation method (RPIM) for three-dimensional solids. Comput Mech 36:421–430MathSciNetCrossRefMATH
34.
Zurück zum Zitat Li X (2016) Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces. Appl Numer Math 99:77–97MathSciNetCrossRefMATH Li X (2016) Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces. Appl Numer Math 99:77–97MathSciNetCrossRefMATH
35.
Zurück zum Zitat Liu GR (2009) Meshfree methods: moving beyond the finite element method, vol 2. CRC Press, SingaporeCrossRef Liu GR (2009) Meshfree methods: moving beyond the finite element method, vol 2. CRC Press, SingaporeCrossRef
36.
Zurück zum Zitat Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, SingaporeCrossRefMATH Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, SingaporeCrossRefMATH
37.
Zurück zum Zitat Mastryukov AF, Mikhailenko BG (2010) Solving the 2D Maxwell equations by a Laguerre spectral method. Numer Anal Appl 3:118–132CrossRef Mastryukov AF, Mikhailenko BG (2010) Solving the 2D Maxwell equations by a Laguerre spectral method. Numer Anal Appl 3:118–132CrossRef
38.
Zurück zum Zitat Maxwell JC (1952) A dynamical theory of the electromagnetic field. Sci Pap James Clerk Maxwell 1:528–567 Maxwell JC (1952) A dynamical theory of the electromagnetic field. Sci Pap James Clerk Maxwell 1:528–567
39.
40.
Zurück zum Zitat Movahhedi M, Abdipour A, Nentchev A, Dehghan M, Selberherr S (2007) Alternating-direction implicit formulation of the finite-element time-domain method. IEEE Microw Theory Tech 55:1322–1331CrossRef Movahhedi M, Abdipour A, Nentchev A, Dehghan M, Selberherr S (2007) Alternating-direction implicit formulation of the finite-element time-domain method. IEEE Microw Theory Tech 55:1322–1331CrossRef
42.
Zurück zum Zitat Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318CrossRefMATH Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318CrossRefMATH
43.
Zurück zum Zitat Onate E, Perazzo F, Miquel J (2001) A finite point method for elasticity problems. Comput Struct 79:2151–2163CrossRef Onate E, Perazzo F, Miquel J (2001) A finite point method for elasticity problems. Comput Struct 79:2151–2163CrossRef
44.
Zurück zum Zitat Peaceman D, Rachford H (1955) The numerical solution of elliptic and parabolic differential equations. J SIAM 3:28–41MATH Peaceman D, Rachford H (1955) The numerical solution of elliptic and parabolic differential equations. J SIAM 3:28–41MATH
45.
Zurück zum Zitat Sabouri M, Dehghan M (2015) An efficient implicit spectral element method for time-dependent nonlinear diffusion equations by evaluating integrals at one quadrature point. Comput Math Appl 70:2513–2541MathSciNetCrossRef Sabouri M, Dehghan M (2015) An efficient implicit spectral element method for time-dependent nonlinear diffusion equations by evaluating integrals at one quadrature point. Comput Math Appl 70:2513–2541MathSciNetCrossRef
46.
Zurück zum Zitat Sarabadan S, Shahrezaee M, Rad JA, Parand K (2014) Numerical solution of Maxwell equations using local weak form meshless techniques. J Math Comput Sci 13:168–185 Sarabadan S, Shahrezaee M, Rad JA, Parand K (2014) Numerical solution of Maxwell equations using local weak form meshless techniques. J Math Comput Sci 13:168–185
47.
Zurück zum Zitat Sengupta DL, Sarkar TK (2003) Maxwell, Hertz, the Maxwellians, and the early history of electromagnetic waves. IEEE Antennas Propag Mag 45:13–19CrossRef Sengupta DL, Sarkar TK (2003) Maxwell, Hertz, the Maxwellians, and the early history of electromagnetic waves. IEEE Antennas Propag Mag 45:13–19CrossRef
48.
Zurück zum Zitat Shakeri F, Dehghan M (2013) A high order finite volume element method for solving elliptic partial integro-differential equations. Appl Numer Math 65:105–118MathSciNetCrossRefMATH Shakeri F, Dehghan M (2013) A high order finite volume element method for solving elliptic partial integro-differential equations. Appl Numer Math 65:105–118MathSciNetCrossRefMATH
49.
Zurück zum Zitat Shakeri F, Dehghan M (2008) The method of lines for solution of the one-dimensional wave equation subject to an integral conservation condition. Comput Math Appl 56:2175–2188MathSciNetCrossRefMATH Shakeri F, Dehghan M (2008) The method of lines for solution of the one-dimensional wave equation subject to an integral conservation condition. Comput Math Appl 56:2175–2188MathSciNetCrossRefMATH
50.
Zurück zum Zitat Shashkov M (1995) Conservative Finite-difference methods on general grids. CRC Press, USA Shashkov M (1995) Conservative Finite-difference methods on general grids. CRC Press, USA
51.
Zurück zum Zitat Stuben K, Trottenberg U (1982) Multigrid methods: fundamental algorithms, model problem analysis and applications. Springer, BerlinMATH Stuben K, Trottenberg U (1982) Multigrid methods: fundamental algorithms, model problem analysis and applications. Springer, BerlinMATH
52.
Zurück zum Zitat Xu J, Belytschko T Discontinuous radial basis function approximations for meshfree methods. Meshfree methods for partial differential equations II, volume 43 of the series lecture notes in computational science and engineering, pp 231–253 Xu J, Belytschko T Discontinuous radial basis function approximations for meshfree methods. Meshfree methods for partial differential equations II, volume 43 of the series lecture notes in computational science and engineering, pp 231–253
53.
Zurück zum Zitat Yee K (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. Antennas Propag 14:302–307CrossRefMATH Yee K (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. Antennas Propag 14:302–307CrossRefMATH
54.
Zurück zum Zitat Yu Y, Chen Z (2009) A 3-D radial point interpolation method for meshless time-domain modeling. Microw Theory Tech 57:2015–2020CrossRef Yu Y, Chen Z (2009) A 3-D radial point interpolation method for meshless time-domain modeling. Microw Theory Tech 57:2015–2020CrossRef
55.
Zurück zum Zitat Yu Y, Chen Z (2009) Towards the development of unconditionally stable time-domain meshless numerical methods. Microw Symp Dig, pp 7–12 Yu Y, Chen Z (2009) Towards the development of unconditionally stable time-domain meshless numerical methods. Microw Symp Dig, pp 7–12
56.
Zurück zum Zitat Yu Y, Chen Z (2010) Towards the development of an unconditionally stable time-domain meshless method. Microw Theory Tech 58:578–586CrossRef Yu Y, Chen Z (2010) Towards the development of an unconditionally stable time-domain meshless method. Microw Theory Tech 58:578–586CrossRef
57.
Zurück zum Zitat Zeng F, Ma H, Liang D (2014) Energy-conserved splitting spectral method for two-dimensional Maxwell’s equations. J Comput Appl Math 265:301–321MathSciNetCrossRefMATH Zeng F, Ma H, Liang D (2014) Energy-conserved splitting spectral method for two-dimensional Maxwell’s equations. J Comput Appl Math 265:301–321MathSciNetCrossRefMATH
Metadaten
Titel
The local radial point interpolation meshless method for solving Maxwell equations
verfasst von
Mehdi Dehghan
Mina Haghjoo-Saniji
Publikationsdatum
25.03.2017
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 4/2017
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-017-0505-2

Weitere Artikel der Ausgabe 4/2017

Engineering with Computers 4/2017 Zur Ausgabe

Neuer Inhalt