Skip to main content
Log in

Modification of closure depths by synchronisation of severe seas and high water levels

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

The closure depth indicates the depth down to which storm waves maintain a universal shape of the coastal profile. It is thus a key parameter of the coastal zones for a variety of engineering and ecosystem applications. Its values are commonly estimated with respect to the long-term mean water level. The present study re-evaluates closure depths for microtidal water bodies where the wave loads are highly correlated with the course of the water level. The test area is the eastern Baltic Sea. The closure depth is calculated for the eastern Baltic Sea coast with a resolution of 5.5 km and the vicinity of Tallinn Bay with a resolution of 0.5 km. While the classic values of closure depth are extracted from statistics of the roughest seas, the present analysis is based on single values of a proxy of the instantaneous closure depth. These values are evaluated from numerically simulated time series of wave properties and water levels. The water level-adjusted closure depths are almost equal to the classic values at the coasts of Lithuania but are up to 10% smaller at the Baltic Proper coasts of Latvia and Estonia. The difference is up to 20% in bayheads of the Gulf of Finland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anfuso G, Pranzini E, Vitale G (2011) An integrated approach to coastal erosion problems in northern Tuscany (Italy): littoral morphological evolution and cell distribution. Geomorphology 129:204–214. doi:10.1016/j.geomorph.2011.01.023

    Article  Google Scholar 

  • Are F, Reimnitz E (2008) The A and m coefficients in the Bruun/Dean Equilibrium Profile equation seen from the Arctic. J Coast Res 24:243–249. doi:10.2112/05-0572.1

    Article  Google Scholar 

  • Are F, Reimnitz E, Grigoriev M, Hubberten HW, Rachold V (2008) The influence of cryogenic processes on the erosional arctic shoreface. J Coast Res 24:110–121. doi:10.2112/05-0573.1

    Article  Google Scholar 

  • Babanin AV, Hsu T-W, Roland A, Ou S-H, Doong D-J, Kao CC (2011) Spectral wave modelling of Typhoon Krosa. Nat Hazards Earth Syst Sci 11:501–511. doi:10.5194/nhess-11-501-2011

    Article  Google Scholar 

  • Birkemeier WA (1985) Field data on seaward limit of profile change. J Waterw Port C Div 111:598–602

    Article  Google Scholar 

  • Bruun P (1962) Sea level rise as a cause of shore erosion. J Waterw Harbours Div ASCE 88:117–133

    Google Scholar 

  • Cerkowniak GR, Ostrowski R, Stella M (2015a) Depth of closure in the multi-bar non-tidal nearshore zone of the Baltic Sea: Lubiatowo (Poland) case study. Bull Maritime Inst Gdańsk 30:180–188. doi:10.5604/12307424.1185577

    Google Scholar 

  • Cerkowniak GR, Ostrowski R, Stella M (2015b) Wave-induced sediment motion beyond the surf zone: case study of Lubiatowo (Poland). Arch Hydro Eng Environ Mech 62:27–39. doi:10.1515/heem-2015-00017

    Article  Google Scholar 

  • Cerkowniak GR, Ostrowski R, Pruszak Z (2016) Application of Dean’s curve to investigation of a long-term evolution of the southern Baltic multi-bar shore profile. Oceanologia. doi:10.1016/j.oceano.2016.06.001

    Google Scholar 

  • Dean RG (1991) Equilibrium beach profiles: characteristics and applications. J Coast Res 7:53–84

    Google Scholar 

  • Dean RG (2002) Beach nourishment. Theory and practice. World Scientific, River Edge, NJ

    Google Scholar 

  • Dean RG, Dalrymple RA (2002) Coastal processes with engineering applications. Cambridge University Press, New York

    Google Scholar 

  • Dean RG, Healy TR, Dommerholt AA (1993) A “blind-folded” test of equilibrium beach profile concepts with New Zealand data. Mar Geol 109:253–266. doi:10.1016/0025-3227(93)90064-3

    Article  Google Scholar 

  • Didenkulova I, Soomere T (2011) Formation of two-section cross-shore profile under joint influence of random short waves and groups of long waves. Mar Geol 289:29–33. doi:10.1016/j.margeo.2011.09.011

    Article  Google Scholar 

  • Eelsalu M, Soomere T, Pindsoo K, Lagemaa P (2014) Ensemble approach for projections of return periods of extreme water levels in Estonian waters. Cont Shelf Res 91:201–210. doi:10.1016/j.csr.2014.09.012

    Article  Google Scholar 

  • Eelsalu M, Soomere T, Julge K (2015) Quantification of changes in the beach volume by the application of an inverse of the Bruun Rule and laser scanning technology. Proc Est Acad Sci 64:240–248. doi:10.3176/proc.2015.3.06

    Article  Google Scholar 

  • Frihy OE, Iskander MM, Badr AEMA (2004) Effects of shoreline and bedrock irregularities on the morphodynamics of the Alexandria coast littoral cell, Egypt. Geo-Mar Lett 24:195–211. doi:10.1007/s00367-004-0178-x

    Article  Google Scholar 

  • Hallermeier RJ (1978) Uses for a calculated limit depth to beach erosion. In: Proc 16th Int Conf Coast Eng. ASCE, Hamburg, p 1493–1512

  • Hallermeier RJ (1981) A profile zonation for seasonal sand beaches from wave climate. Coast Eng 4:253–277

    Article  Google Scholar 

  • Houston JR (1996) Simplified Dean’s method for beach-fill design. J Waterw Port C Div 122:143–146. doi:10.1061/(ASCE)0733-950X(1996)122:3(143)

    Article  Google Scholar 

  • Houston JR (2015) Shoreline response to sea-level rise on the southwest coast of Florida. J Coast Res 31:777–789. doi:10.2112/JCOASTRES-D-14-00161.1

    Article  Google Scholar 

  • Houston JR, Dean RG (2014) Shoreline change on the east coast of Florida. J Coast Res 30:647–660. doi:10.2112/JCOASTRES-D-14-00028.1

    Article  Google Scholar 

  • Kartau K, Soomere T, Tõnisson H (2011) Quantification of sediment loss from semi-sheltered beaches: a case study of Valgerand Beach, Pärnu Bay, the Baltic Sea. J Coast Res SI 64:100–104

    Google Scholar 

  • Kask A, Soomere T, Healy TR, Delpeche N (2009) Rapid estimate of sediment loss for “almost equilibrium” beaches. J Coast Res SI 56:971–975

    Google Scholar 

  • Kit E, Pelinovsky E (1998) Dynamical models for cross-shore transport and equilibrium bottom profiles. J Waterw Port Coast Ocean Eng 124:138–146. doi:10.1061/(ASCE)0733-950X(1998)124:3(138)

    Article  Google Scholar 

  • Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen PAEM (1994) Dynamics and modelling of ocean waves. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kraus NC (1992) Engineering approaches to cross-shore sediment processes. In: Lamberti A (ed) Proc short course, Design and reliability of coastal structures. In: 23rd Int Conf Coast Eng (ICCE), 1–3 October 1992, Venice, p 175–209

  • Larson M (1991) Equilibrium profile of a beach with varying grain size. In: Proc Coastal Sediments 1991, Seattle, Washington. ASCE, p 905–919

  • Leppäranta M, Myrberg K (2009) Physical oceanography of the Baltic Sea. Springer Praxis, Berlin

    Book  Google Scholar 

  • Lopez-Ruiz A, Solari S, Ortega-Sanchez M, Losada M (2015) A simple approximation for wave refraction - Application to the assessment of the nearshore wave directionality. Ocean Model 96:324–333. doi:10.1016/j.ocemod.2015.09.007

    Article  Google Scholar 

  • Meier HEM, Höglund A (2013) Studying the Baltic Sea circulation with Eulerian tracers. In: Soomere T, Quak E (eds) Preventive methods for coastal protection. Springer, Cham, pp 101–130. doi:10.1007/978-3-319-00440-2_4

    Chapter  Google Scholar 

  • Meier HEM, Döscher R, Faxén T (2003) A multiprocessor coupled ice-ocean model for the Baltic Sea: application to salt inflow. J Geophys Res Oceans 108(C8):3273. doi:10.1029/2000JC000521

    Article  Google Scholar 

  • Meier HEM, Broman B, Kjellström E (2004) Simulated sea level in past and future climates of the Baltic Sea. Clim Res 27:59–75. doi:10.3354/cr027059

    Article  Google Scholar 

  • Nicholls RJ, Birkemeier WA, Hallermeier RJ (1996) Application of the depth of closure concept. In: Proc 25th Int Conf Coast Eng. ASCE, Orlando, p 3874–3887

  • Nicholls JR, Larson M, Capobianco M, Birkemeier WA (1998) Depth of closure: improving understanding and prediction. Coast Eng 1998:2888–2901. doi:10.1061/9780784404119.219

    Google Scholar 

  • Orviku K (1974) Estonian seacoasts (in Russian). Estonian Academy of Sciences Publishers, Tallinn

    Google Scholar 

  • Phillips MR, Williams AT (2007) Depth of closure and shoreline indicators: empirical formulae for beach management. J Coast Res 23:487–500. doi:10.2112/05-0593.1

    Article  Google Scholar 

  • Pindsoo K, Soomere T (2015) Contribution of wave set-up into the total water level in the Tallinn area. Proc Est Acad Sci 64(3S):338–348. doi:10.3176/proc.2015.3S.03

    Article  Google Scholar 

  • Räämet A, Soomere T (2010) The wave climate and its seasonal variability in the northeastern Baltic Sea. Estonian J Earth Sci 59:100–113. doi:10.3176/earth.2010.1.08

    Article  Google Scholar 

  • Raukas A, Hyvärinen H (eds) (1992) Geology of the Gulf of Finland (in Russian). Valgus, Tallinn

    Google Scholar 

  • Samuelsson P, Jones CG, Willén U, Ullerstig A, Gollovik S, Hansson U, Jansson C, Kjellström E, Nikulin G, Wyser K (2011) The Rossby Centre Regional Climate Model RCA3: model description and performance. Tellus A 63:4–23. doi:10.1111/j.1600-0870.2010.00478.x

    Article  Google Scholar 

  • Simm JD (ed) (1996) Beach management manual. CIRIA Report 153, London

  • Soomere T (2005) Wind wave statistics in Tallinn Bay. Boreal Environ Res 10:103–118

    Google Scholar 

  • Soomere T (2016) Extremes and decadal variations in the Baltic Sea wave conditions. In: Pelinovsky E, Kharif C (eds) Extreme ocean waves, 2nd edn. Springer, Cham, pp 107–140. doi:10.1007/978-3-319-21575-4_7

    Chapter  Google Scholar 

  • Soomere T, Räämet A (2011) Spatial patterns of the wave climate in the Baltic Proper and the Gulf of Finland. Oceanologia 53(1-TI):335–371

    Article  Google Scholar 

  • Soomere T, Räämet A (2014) Decadal changes in the Baltic Sea wave heights. J Mar Syst 129:86–95. doi:10.1016/j.jmarsys.2013.03.009

    Article  Google Scholar 

  • Soomere T, Kask A, Kask J, Healy TR (2008) Modelling of wave climate and sediment transport patterns at a tideless embayed beach, Pirita Beach, Estonia. J Mar Syst 74:S133–S146. doi:10.1016/j.jmarsys.2008.03.024

    Article  Google Scholar 

  • Soomere T, Viška M, Eelsalu M (2013) Spatial variations of wave loads and closure depth along the coast of the eastern Baltic Sea. Est J Eng 19:93–109. doi:10.3176/eng.2013.2.01

    Article  Google Scholar 

  • Soomere T, Döös K, Lehmann A, Meier HEM, Murawski J, Myrberg K, Stanev E (2014) The potential of current- and wind-driven transport for environmental management of the Baltic Sea. Ambio 43:94–104. doi:10.1007/s13280-013-0486-3

    Article  Google Scholar 

  • Suursaar Ü, Sooäär J (2007) Decadal variations in mean and extreme sea level values along the Estonian coast of the Baltic Sea. Tellus A 59:249–260. doi:10.1111/j.1600-0870.2006.00220.x

    Article  Google Scholar 

  • USACE (2002) Coastal Engineering Manual. US Army Corps of Engineers, Washington, DC, Manual No. 1110-2-1100 (CD)

    Google Scholar 

Download references

Acknowledgements

This study was initiated by the Small Grants Scheme Project “Effects of climate changes on biodiversity in the coastal shelves of the Baltic Sea” 2015–2016 (EEA grant No. 2/EEZLV02/14/GS/022) financed by European Economic Area Financial Instrument 2009–2014 Programme “National Climate Policy”. The research was partially supported by the institutional support of the Estonian Ministry of Education and Research (IUT33-3) and by the project “Sebastian Checkpoints – Lot 3 Baltic” of the call MARE/2014/09. Also acknowledged are constructive assessments by J. Deng and J. Harff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarmo Soomere.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soomere, T., Männikus, R., Pindsoo, K. et al. Modification of closure depths by synchronisation of severe seas and high water levels. Geo-Mar Lett 37, 35–46 (2017). https://doi.org/10.1007/s00367-016-0471-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-016-0471-5

Keywords

Navigation