Skip to main content
Log in

Multilevel vorticity confinement for water turbulence simulation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Physically based fluid simulation can provide realism, but simulating water turbulence remains challenging. Recently, there have been much work on gas turbulence, but these algorithms mostly rely on the Kolmogorov theory which is not directly applicable to water turbulence simulation. This paper presents a novel technique for simulating water turbulence. We show that sub-grid turbulence can be created by employing a flow-scale separation technique. We adopted the multi-scale flow separation method to derive a special small-scale equation. Small-scale velocities are then generated and manipulated by the equation. To simulate the turbulence effect, this work employed the vorticity confinement method. By extending the original method to multi-level, we effectively simulate energy cascading effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cook, R.L., DeRose, T.: Wavelet noise. ACM Trans. Graph. 24(3), 803–811 (2005). doi:10.1145/1073204.1073264

    Article  Google Scholar 

  2. Davidson, P.A.: Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, London (2004)

    MATH  Google Scholar 

  3. Fedkiw, R., Stam, J., Jensen, H.W.: Visual simulation of smoke. In: SIGGRAPH ’01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pp. 15–22. ACM, New York (2001). doi:10.1145/383259.383260

    Chapter  Google Scholar 

  4. Lynn, F., Steinhoff, N.J.: Large Reynolds number turbulence modeling with vorticity confinement. In: 18th AIAA Computational Fluid Dynamics Conference, pp. 1–14. American Institute of Aeronautics and Astronautics, Reston (2007)

    Google Scholar 

  5. Kemenov, K.A., Menon, S.: Explicit small-scale velocity simulation for high-re turbulent flows. J. Comput. Phys. 220(1), 290–311 (2006). doi:10.1016/j.jcp.2006.05.006

    Article  MATH  MathSciNet  Google Scholar 

  6. Kemenov, K.A., Menon, S.: Explicit small-scale velocity simulation for high-re turbulent flows. Part ii: Non-homogeneous flows. J. Comput. Phys. 222(2), 673–701 (2007). doi:10.1016/j.jcp.2006.08.002

    Article  MATH  MathSciNet  Google Scholar 

  7. Kim, B., Liu, Y., Llamas, I., Rossignac, J.: Advections with significantly reduced dissipation and diffusion. IEEE Trans. Vis. Comput. Graph. 13(1), 135–144 (2007). doi:10.1109/TVCG.2007.3

    Article  Google Scholar 

  8. Kim, D., Song, O.Y., Ko, H.S.: A semi-Lagrangian cip fluid solver without dimensional splitting. Comput. Graph. Forum 27(2), 467–475 (2008)

    Article  Google Scholar 

  9. Kim, D., Song, O.Y., Ko, H.S.: Stretching and wiggling liquids. In: SIGGRAPH Asia ’09: ACM SIGGRAPH Asia 2009 papers, pp. 1–7. ACM, New York (2009). doi:10.1145/1661412.1618466

    Google Scholar 

  10. Kim, T., Thürey, N., James, D., Gross, M.: Wavelet turbulence for fluid simulation. In: SIGGRAPH ’08: ACM SIGGRAPH 2008 papers, pp. 1–6. ACM, New York (2008). doi:10.1145/1399504.1360649

    Google Scholar 

  11. Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. In: SIGGRAPH ’04: ACM SIGGRAPH 2004 papers, pp. 457–462. ACM, New York (2004). doi:10.1145/1186562.1015745

    Chapter  Google Scholar 

  12. Molemaker, J., Cohen, J.M., Patel, S., Noh, J.: Low viscosity flow simulations for animation. In: SCA ’08: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 9–18. Eurographics Association, Aire-la-Ville (2008)

    Google Scholar 

  13. Mullen, P., Crane, K., Pavlov, D., Tong, Y., Desbrun, M.: Energy-preserving integrators for fluid animation. In: SIGGRAPH ’09: ACM SIGGRAPH 2009 papers, pp. 1–8. ACM, New York (2009). doi:10.1145/1576246.1531344

    Google Scholar 

  14. Narain, R., Sewall, J., Carlson, M., Lin, M.C.: Fast animation of turbulence using energy transport and procedural synthesis. In: SIGGRAPH Asia ’08: ACM SIGGRAPH Asia 2008 papers, pp. 1–8. ACM, New York (2008). doi:10.1145/1457515.1409119

    Google Scholar 

  15. Nielsen, M.B., Museth, K.: Dynamic tubular grid: An efficient data structure and algorithms for high resolution level sets. J. Sci. Comput. 26(3), 261–299 (2006). doi:10.1007/s10915-005-9062-8

    Article  MATH  MathSciNet  Google Scholar 

  16. Park, S.I., Kim, M.J.: Vortex fluid for gaseous phenomena. In: SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 261–270. ACM, New York (2005). doi:10.1145/1073368.1073406

    Chapter  Google Scholar 

  17. Perlin, K.: An image synthesizer. SIGGRAPH Comput. Graph. 19(3), 287–296 (1985). doi:10.1145/325165.325247

    Article  Google Scholar 

  18. Perlin, K., Neyret, F.: Flow noise. In: Siggraph Technical Sketches and Applications, p. 187 (2001). http://www-evasion.imag.fr/Publications/2001/PN01

  19. Pfaff, T., Thuerey, N., Selle, A., Gross, M.: Synthetic turbulence using artificial boundary layers. In: SIGGRAPH Asia ’09: ACM SIGGRAPH Asia 2009 papers, pp. 1–10. ACM, New York (2009). doi:10.1145/1661412.1618467

    Chapter  Google Scholar 

  20. Schechter, H., Bridson, R.: Evolving sub-grid turbulence for smoke animation. In: SCA ’08: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 1–7. Eurographics Association, Aire-la-Ville (2008)

    Google Scholar 

  21. Selle, A., Fedkiw, R., Kim, B., Liu, Y., Rossignac, J.: An unconditionally stable MacCormack method. J. Sci. Comput. 35(23), 350–371 (2008). doi:10.1007/s10915-007-9166-4

    Article  MathSciNet  Google Scholar 

  22. Selle, A., Rasmussen, N., Fedkiw, R.: A vortex particle method for smoke, water and explosions. In: SIGGRAPH ’05: ACM SIGGRAPH 2005 papers, pp. 910–914. ACM, New York (2005). doi:10.1145/1186822.1073282

    Chapter  Google Scholar 

  23. Song, O.Y., Kim, D., Ko, H.S.: Derivative particles for simulating detailed movements of fluids. IEEE Trans. Vis. Comput. Graph. 13(4), 711–719 (2007). doi:10.1109/TVCG.2007.1022

    Article  Google Scholar 

  24. Song, O.Y., Shin, H., Ko, H.S.: Stable but nondissipative water. ACM Trans. Graph. 24(1), 81–97 (2005). doi:10.1145/1037957.1037962

    Article  Google Scholar 

  25. Stam, J.: Stable fluids. In: SIGGRAPH ’99: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp. 121–128. ACM Press/Addison-Wesley, New York (1999). doi:10.1145/311535.311548

    Chapter  Google Scholar 

  26. Stam, J., Fiume, E.: Turbulent wind fields for gaseous phenomena. In: SIGGRAPH ’93: Proceedings of the 20th annual conference on Computer graphics and interactive techniques, pp. 369–376. ACM, New York (1993). doi:10.1145/166117.166163

    Chapter  Google Scholar 

  27. Steinhoff, J., Underhill, D.: Modification of the Euler equations for “vorticity confinement”: Application to the computation of interacting vortex rings. Phys. Fluids 6(8), 2738–2744 (1994). doi:10.1063/1.868164. http://link.aip.org/link/?PHF/6/2738/1

    Article  MATH  Google Scholar 

  28. Zhu, Y., Bridson, R.: Animating sand as a fluid. In: SIGGRAPH ’05: ACM SIGGRAPH 2005 papers, pp. 965–972. ACM, New York (2005). doi:10.1145/1186822.1073298

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taekwon Jang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, T., Kim, H., Bae, J. et al. Multilevel vorticity confinement for water turbulence simulation. Vis Comput 26, 873–881 (2010). https://doi.org/10.1007/s00371-010-0487-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0487-1

Keywords

Navigation