Skip to main content
Log in

High-quality tree structures modelling using local convolution surface approximation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we propose a local convolution surface approximation approach for quickly modelling tree structures with pleasing visual effect. Using our proposed local convolution surface approximation, we present a tree modelling scheme to create the structure of a tree with a single high-quality quad-only mesh. Through combining the strengths of the convolution surfaces, subdivision surfaces and GPU, our tree modelling approach achieves high efficiency and good mesh quality. With our method, we first extract the line skeletons of given tree models by contracting the meshes with the Laplace operator. Then we approximate the original tree mesh with a convolution surface based on the extracted skeletons. Next, we tessellate the tree trunks represented by convolution surfaces into quad-only subdivision surfaces with good edge flow along the skeletal directions. We implement the most time-consuming subdivision and convolution approximation on the GPU with CUDA, and demonstrate applications of our proposed approach in branch editing and tree composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Akkouche, S., Galin, E.: Adaptive implicit surface polygonization using marching triangles. Comput. Graph. Forum 20(2), 67–80 (2001)

    Article  MATH  Google Scholar 

  2. Alexe, A., Barthe, L., Cani, M.P., Gaildrat, V.: Shape modelling by sketching using convolution surfaces. In: Pacific Graphics (Short Papers) (2005)

  3. Alexe, A., Barthe, L., Gaildrat, V., Cani, M.: A sketch-based modelling system using convolution surfaces. In: Technical Report IRIT—2005–17-R

  4. Alexe, A., Gaildrat, V., Barthe, L.: Interactive modelling from sketches using spherical implicit functions. In: Proceedings of the 3rd International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa, AFRIGRAPH ’04, pp. 25–34. ACM, New York (2004)

  5. Angelidis, A., Jepp, P., Cani, M.P.: Implicit modelling with skeleton curves: controlled blending in contact situations. In: Proceedings of the Shape Modeling International 2002 (SMI’02), SMI ’02, pp. 137–144. IEEE Computer Society, Washington, DC (2002)

  6. Au, O., Tai, C., Chu, H., Cohen-Or, D., Lee, T.: Skeleton extraction by mesh contraction. In: ACM SIGGRAPH 2008, SIGGRAPH’08, pp. 44:1–44:10. ACM, New York (2008)

  7. Bernhardt, A., Pihuit, A., Cani, M.P., Barthe, L.: Matisse: painting 2d regions for modeling free-form shapes. In: EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling, SBIM’08, pp. 57–64. Eurographics Association, Annecy (2008)

  8. Bloomenthal, J.: An implicit surface polygonizer. In: Graphics Gems IV, pp. 324–349. Academic Press, San Diego (1994)

  9. Bloomenthal, J., Shoemake, K.: Convolution surfaces. Comput. Graph. 25(4), 251–256 (1991)

    Article  Google Scholar 

  10. Bottino, A., Nuij, W., Overveld, K.v.: How to shrinkwrap a sadle-point: an algorithm for the adaptive triangulation of iso-surfaces with arbitrary topology. In: Proceedings Eindhoven Implicit Surfaces, Workshop (1996)

  11. Bucksch, A., Lindenbergh, R., Menenti, M.: Skeltre-fast skeletonization for imperfect point cloud data of botanic trees. In: EG Workshop on 3D Object Retrieval, pp. 13–27 (2009)

  12. Bunnell, M.: Adaptive Tessellation of Subdivision Surfaces with Displacement Mapping. In: GPU Gems 2. Addison Wesley Professional, Boston (2005)

  13. Cao, J., Tagliasacchi, A., Olson, M., Zhang, H., Su, Z.: Point cloud skeletons via laplacian-based contraction. In: Proceedings of the IEEE Conference on Shape Modeling and Applications, SMI’10, pp. 187–197. IEEE Computer Society, Washington, DC (2010)

  14. Catmull, E., Clark, J.: Recursively generated b-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 10(6), 350–355 (1978)

    Article  Google Scholar 

  15. Chen, X., Neubert, B., Xu, Y., Deussen, O., Kang, S.: Sketch-based tree modeling using markov random field. ACM Trans. Graph. 27(5), 1–9 (2008)

    Article  Google Scholar 

  16. Deussen, O., Lintermann, B.: Digital Design of Nature: Computer Generated Plants and Organs. Springer, New York (2005)

    Google Scholar 

  17. Doo, D., Sabin, M.: Behavior of recursive division surfaces near extraodinary points. Comput. Aided Des. 10(6), 356–360 (1978)

    Article  Google Scholar 

  18. Fabri, A., Giezeman, G.J., Kettner, L., Schirra, S., Schonherr, S.: On the design of cgal a computational geometry algorithms library. Software Pract. Exper. 30(11), 1167–1202 (2000)

    Article  MATH  Google Scholar 

  19. Galbraith, C., Mündermann, L., Wyvill, B.: Implicit visualization and inverse modeling of growing trees. Comput. Graph. Forum 23, 351–360 (2004)

    Article  Google Scholar 

  20. Gourmel, O., Barthe, L., Cani, M.P., Wyvill, B., Bernhardt, A., Paulin, M., Grasberger, H.: A gradient-based implicit blend. ACM Trans. Graph. 32(2), 12:1–12:12 (2013)

    Article  Google Scholar 

  21. Hart, J.C., Baker, B.: Implicit modeling of tree surfaces. In: Implicit Surfaces ’96, pp. 143–152 (1996)

  22. Hubert, E.: Convolution surfaces based on polygons for infinite and compact support kernels. Graph. Models 74(1), 1–13 (2012)

    Article  Google Scholar 

  23. Hubert, E., Cani, M.P.: Convolution surfaces based on polygonal curve skeletons. J. Symb. Comput. 47(6), 680–699 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ji, Z., Liu, L., Wang, Y.: B-mesh: a modeling system for base meshes of 3d articulated shapes. Comput. Graph. Forum 29(7), 2169–2178 (2010)

    Article  Google Scholar 

  25. Jin, X., Tai, C.: Analytical methods for polynomial weighted convolution surfaces with various kernels. Comput. Graph. 26(3), 437–447 (2002)

    Article  Google Scholar 

  26. Jin, X., Tai, C.: Convolution surfaces for arcs and quadratic curves with a varying kernel. Vis. Comput. 18(8), 530–546 (2002)

    Article  Google Scholar 

  27. Jin, X., Tai, C., Zhang, H.: Implicit modeling from polygon soup using convolution. Vis. Comput. 25(3), 279–288 (2009)

    Article  Google Scholar 

  28. Kettner, L.: \(\sqrt{3}\) subdivision. In: ACM SIGGRAPH 2000, SIGGRAPH’00, pp. 103–112. ACM, New York (2000)

  29. Lin, J., Jin, X., Wang, C.C.: Fusion of disconnected mesh components with branching shape. Vis. Comput. 26(6–8), 1017–1025 (2010)

    Article  Google Scholar 

  30. Lindenmayer, A.: Mathematical models for cellular interactions in development ii. simple and branching filaments with two-sided inputs. J. Theor. Biol. 18(3), 300–315 (1968)

    Article  Google Scholar 

  31. Livny, Y., Yan, F., Olson, M., Chen, B., Zhang, H., El-sana, J.: Automatic reconstruction of tree skeletal structures from point clouds. In: ACM SIGGRAPH Asia 2010, SIGGRAPH ASIA’10, pp. 151:1–151:8. ACM, New York (2010)

  32. Lluch, J., Viv, R., Monserrat, C.: Modelling tree structures using a single polygonal mesh. Graph. Models 66(2), 89–101 (2004)

    Article  MATH  Google Scholar 

  33. Longay, S., Runions, A., Boudon, F., Prusinkiewicz, P.: Treesketch: interactive procedural modeling of trees on a tablet. In: Proceedings of the International Symposium on Sketch-Based Interfaces and Modeling, SBIM ’12, pp. 107–120. Eurographics Association, Aire-la-Ville (2012)

  34. Loop, C.: Smooth subdivision surfaces based on triangles. Master’s Thesis, Department of Mathematics, University of Utah (1987)

  35. Loop, C., Schaefer, S., Ni, T., Castano, I.: Approximating subdivision surfaces with gregory patches for hardware tesselation. ACM Trans. Graph. 28(5), 1–9 (2009)

    Article  Google Scholar 

  36. Maréchal, N., Galin, E., Guérin, E., Akkouche, S.: Component-based model synthesis for low polygonal models. In: Proceedings of Graphics Interface 2010, GI ’10, pp. 217–224. Canadian Information Processing Society, Toronto (2010)

  37. McCormack, J., Sherstyuk, A.: Creating and rendering convolution surfaces. Comput. Graph. Forum 17(2), 113–120 (1998)

    Article  Google Scholar 

  38. Neubert, B., Franken, T., Deussen, O.: Approximate image-based tree-modeling using particle flows. ACM Trans. Graph. 26(3), 88–95 (2007)

    Article  Google Scholar 

  39. Okabe, M., Owada, S., Igarashi, T.: Ineractive design of botanical trees using freehand sketches and example-based editing. Comput. Graph. Forum 24(3), 487–496 (2005)

    Article  Google Scholar 

  40. Overveld, K.v., Wyvill, B.: Shrinkwrap: an efficient adaptive algorithm for triangulating an iso-surface. Vis. Comput 20(6), 362–369 (2004)

    Google Scholar 

  41. Palubicki, W., Horel, K., Longay, S., Runions, A., Lane, B., Mech, R., Prusinkiewicz, P.: Self-organizing tree models for image synthesis. In: ACM SIGGRAPH 2009, SIGGRAPH’09, pp. 1–10. ACM, New York (2009)

  42. Patney, A., Ebeida, M.S., Owens, J.D.: Parallel view-dependent tessellation of catmull-clark subdivision surfaces. In: Proceedings of the Conference on High Performance Graphics 2009, HPG’09, pp. 99–108. ACM, New York (2009)

  43. Pirk, S., Stava, O., Kratt, J., Said, M.A.M., Neubert, B., Měch, R., Benes, B., Deussen, O.: Plastic trees: interactive self-adapting botanical tree models. ACM Trans. Graph. 31(4), 50:1–50:10 (2012)

    Article  Google Scholar 

  44. Reche-Martinez, A., Martin, I., Drettakis, G.: Volumetric reconstruction and interactive rendering of trees from photographs. ACM Trans. Graph. 23(3), 720–727 (2004)

    Article  Google Scholar 

  45. Schmidt, R., Singh, K.: Meshmixer: an interface for rapid mesh composition. In: ACM SIGGRAPH 2010 Talks, SIGGRAPH’10, pp. 6:1–6:1. ACM, New York (2010)

  46. Schwarz, M., Stamminger, M.: Fast gpu-based adaptive tessellation with cuda. Comput. Graph. Forum 28(2), 365–374 (2009)

    Article  Google Scholar 

  47. Sherstyuk, A.: Kernel functions in convolution surfaces: a comparative analysis. Vis. Comput. 15(4), 171–182 (1999)

    Article  MATH  Google Scholar 

  48. Sovakar, A., Kobbelt, L.: Api design for adaptive subdivision schemes. Comput. Graph. 28(1), 67–72 (2004)

    Article  Google Scholar 

  49. Tai, C., Zhang, H., Fong, C.: Prototype modeling from sketched silhouettes based on convolution surfaces. Comput. Graph. Forum 23(4), 71–83 (2004)

    Article  Google Scholar 

  50. Talton, J.O., Lou, Y., Lesser, S., Duke, J., Mech, R., Koltun, V.: Metropolis procedural modeling. ACM Trans. Graph. 30(2), 11:1–11:14 (2011)

    Article  Google Scholar 

  51. Tan, P., Fang, T., Xiao, J., Zhao, P., Quan, L.: Single image tree modeling. ACM Trans. Graph. 27(5), 1–7 (2008)

    Article  Google Scholar 

  52. Tan, P., Zeng, G., Wang, J., Kang, S.B., Quan, L.: Image-based tree modeling. In: ACM SIGGRAPH 2007, SIGGRAPH’07, pp. 87–93. ACM, New York (2007)

  53. Vaillant, R., Barthe, L., Guennebaud, G., Cani, M.P., Rohmer, D., Wyvill, B., Gourmel, O., Paulin, M.: Implicit skinning: real-time skin deformation with contact modeling. ACM Trans. Graph. 32(4), 125:1–125:12 (2013)

    Article  Google Scholar 

  54. Wither, J., Boudon, F., Cani, M.P., Godin, C.: Structure from silhouettes: a new paradigm for fast sketch-based design of trees. Comput. Graph. Forum 28(2), 541–550 (2009)

    Article  Google Scholar 

  55. Wyvill, G., McPheeters, C., Wyvill, B.: Data structure for soft objects. Vis. Comput. 2(4), 227–234 (1986)

    Article  Google Scholar 

  56. Xia, J., Garcia, I., He, Y., Xin, S.Q., Patow, G.: Editable polycube map for gpu-based subdivision surfaces. In: Symposium on Interactive 3D Graphics and Games 2011, I3D’11, pp. 151–158. ACM, New York (2011)

  57. Xu, H., Gossett, N., Chen, B.: Knowledge and heuristic-based modeling of laser-scanned trees. ACM Trans. Graph. 26(4), 19–31 (2007)

    Article  Google Scholar 

  58. Zanni, C., Bernhardt, A., Quiblier, M., Cani, M.P.: Scale-invariant integral surfaces. Comput. Graph. Forum. doi:10.1111/cgf.12199

  59. Zhu, X., Guo, X., Jin, X.: Efficient polygonization of tree trunks modeled by convolution surfaces. Sci. China Ser. F 56(3), 1–12 (2013)

    Google Scholar 

  60. Zhu, X., Jin, X., Liu, S., Zhao, H.: Analytical solutions for sketch-based convolution surface modeling on the gpu. Vis. Comput. 28(11), 1115–1125 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61272298 and 61373084), Zhejiang Provincial Natural Science Foundation of China (Grant No. Z1110154), the China 863 program (Grant Nos. 2012AA011503 and 2013AA01A603), and the Major Science and Technology Innovation Team (Grant no. 2010R50040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Jin, X. & You, L. High-quality tree structures modelling using local convolution surface approximation. Vis Comput 31, 69–82 (2015). https://doi.org/10.1007/s00371-013-0905-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0905-2

Keywords

Navigation