Skip to main content
Log in

Blending using ODE swept surfaces with shape control and \(C^1\) continuity

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Surface blending with tangential continuity is most widely applied in computer-aided design, manufacturing systems, and geometric modeling. In this paper, we propose a new blending method to effectively control the shape of blending surfaces, which can also satisfy the blending constraints of tangent continuity exactly. This new blending method is based on the concept of swept surfaces controlled by a vector-valued fourth order ordinary differential equation (ODE). It creates blending surfaces by sweeping a generator along two trimlines and making the generator exactly satisfy the tangential constraints at the trimlines. The shape of blending surfaces is controlled by manipulating the generator with the solution to a vector-valued fourth order ODE. This new blending methods have the following advantages: (1) exact satisfaction of \(C^1\) continuous blending boundary constraints, (2) effective shape control of blending surfaces, (3) high computing efficiency due to explicit mathematical representation of blending surfaces, and (4) ability to blend multiple (more than two) primary surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vida, J., Martin, R.R., Varady, T.: A survey of blending methods that use parametric surfaces. Computer Aided Design 26(5), 341–365 (1994)

    Article  MATH  Google Scholar 

  2. Rossignac, J.R., Requicha, A.A.G.: Constant-radius blending in solid modeling. Computers Mech. Eng. 3(1), 65–73 (1984)

    Google Scholar 

  3. Choi, B.K., Ju, S.Y.: Constant-radius blending in surface modeling. Computer Aided Design 21(4), 213–220 (1989)

    Article  MATH  Google Scholar 

  4. Barnhill, R.E., Farin, G.E., Chen, Q.: Constant-radius blending of parametric surfaces. Comput. Suppl. 8, 1–20 (1993)

    Article  MathSciNet  Google Scholar 

  5. Farouki, R.A.M., Sverrisson, R.: Approximation of rolling-ball blends for free-form parametric surfaces. Computer Aided Design 28(11), 871–878 (1996)

    Article  Google Scholar 

  6. Kós, G., Martin, R.R., Várady, T.: Methods to recover constant radius rolling ball blends in reverse engineering. Computer Aided Geometr. Design 17, 127–160 (2000)

    Article  Google Scholar 

  7. Chuang, J.-H., Lin, C.-H., Hwang, W.-C.: Variable-radius blending of parametric surfaces. Vis. Computer 11, 513–525 (1995)

    Article  Google Scholar 

  8. Chuang, J.H., Hwang, W.C.: Variable-radius blending by constrained spine generation. Vis. Computer 13, 316–329 (1997)

    Article  MATH  Google Scholar 

  9. Lukács, G.: Differential geometry of \(G^1\) variable radius rolling ball blend surfaces. Computer Aided Geometr. Design 15, 585–613 (1998)

    Article  MATH  Google Scholar 

  10. Whited, B., Rossignac, J.: Relative blending. Computer Aided Design 41, 456–462 (2009)

    Article  Google Scholar 

  11. Krasauskas, R.: Branching blend of natural quadrics based on surfaces with rational offsets. Computer Aided Geometr. Design 25, 332–341 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Zhou, P., Qian, W.-H.: A vertex-first parametric algorithm for polyhedron blending. Computer Aided Design 41, 812–824 (2009)

    Article  Google Scholar 

  13. Zhou, P.: Polyhedral vertex blending with setbacks using rational S-patches. Computer Aided Geometr. Design 27, 233–244 (2010)

    Article  MATH  Google Scholar 

  14. Schichtel, M.: \(G^{2}\) blend surfaces and filling of N-sided holes. IEEE Computer Graph. Appl. 13(9), 68–73 (1993)

  15. Hsu, K.L., Tsay, D.M.: Corner blending of free-form N-sided holes. IEEE Computer Graph. Appl. 18(1), 72–78 (1998)

    Google Scholar 

  16. Piegl, L.A., Tiller, W.: Filling \(n\)-sided regions with NURBS patches. Vis. Computer 15(2), 77–89 (1999)

    MATH  Google Scholar 

  17. Li, G.Q., Li, H.: Blending parametric patches with subdivision surfaces. J. Computer Sci. Technol. 17(14), 498–506 (2002)

  18. Hwang, W.C., Chuang, J.H.: \(N\)-sided hole filling and vertex blending using subdivision surfaces. J. Inf. Sci. Eng. 19, 857–879 (2003)

    MathSciNet  Google Scholar 

  19. Yang, Y.-J., Yong, J.-H., Zhang, H., Paul, J.-C., Sun, J.-G.: A rational extension of Piegl’s method for filling \(n\)-sided holes. Computer Aided Design 38(11), 1166–1178 (2006)

    Article  Google Scholar 

  20. Shi, K.-L., Yong, J.-H., Sun, J.-G.: Filling \(n\)-sided regions with \(G^1\) triangular Coons B-spline patches. Vis. Computer 26, 791–800 (2010)

    Article  Google Scholar 

  21. Bloor, M.I.G., Wilson, M.J.: Generating blend surfaces using partial differential equations. Computer Aided Design 21(3), 165–171 (1989)

    Article  MATH  Google Scholar 

  22. Li, Z.C.: Boundary penalty finite element methods for blending surfaces, I. Basic theory. J. Comput. Math. 16, 457–480 (1998)

    MATH  MathSciNet  Google Scholar 

  23. Li, Z.C.: Boundary penalty finite element methods for blending surfaces, II. Biharmonic equations. J. Comput. Appl. Math. 110, 155–176 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Li, Z.C., Chang, C.-S.: Boundary penalty finite element methods for blending surfaces, III, superconvergence and stability and examples. J. Comput. Appl. Math. 110, 241–270 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Bloor, M.I.G., Wilson, M.J., Mulligan, S.J.: Generating blend surfaces using a perturbation method. Math. Computer Model. 31(1), 1–13 (2000)

    MATH  MathSciNet  Google Scholar 

  26. Bloor, M.I.G., Wilson, M.J.: An analytic pseudo-spectral method to generate a regular 4-sided PDE surface patch. Computer Aided Geometr. Design 22, 203–219 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. You, L.H., Zhang, J.J., Comninos, P.: Blending surface generation using a fast and accurate analytical solution of a fourth order PDE with three shape control parameters. Vis. Computer 20, 199–214 (2004)

    Article  Google Scholar 

  28. You, L.H., Comninos, P., Zhang, J.J.: PDE blending surfaces with \(C^2\) continuity. Computers Graph. 28(6), 895–906 (2004)

  29. Bloor, M.I.G., Wilson, M.J.: Functionality in solids obtained from partial differential equations. Computing 8, 21–42 (1993)

    MathSciNet  Google Scholar 

  30. You, L.H., Chang, J., Yang, X.S., Zhang, J.J.: Solid modeling based on sixth order partial differential equations. Computer Aided Design 43(6), 720–729 (2011)

    Article  Google Scholar 

  31. You, L.H., Yang, X.S., You, X.Y., Jin, X., Zhang, J.J.: Shape manipulation using physically based wire deformations. Computer Anim. Virtual Worlds 21, 297–309 (2010)

    Google Scholar 

  32. You, L.H., Yang, X.S., Zhang, J.J.: Dynamic skin deformation with characteristic curves. Computer Anim. Virtual Worlds 19(3–4), 433–444 (2008)

    Article  Google Scholar 

  33. Chaudhry, E., You, L.H., Jin, X., Yang, X.S., Zhang, J.J.: Shape modeling for animated characters using ordinary differential equations. Computers Graph. 37, 638–644 (2013)

    Article  Google Scholar 

  34. Koparkar, P.: Parametric blending using fanout surfaces. In: Proceedings of Symposium on Solid Modeling Foundations and CAD/CAM Applications. Austin Texas, USA, 5–7 June, pp. 317–327. ACM Press (1991)

Download references

Acknowledgments

This research is supported by the grant of 2013 UK Royal Society International Exchanges Scheme(Grant No. IE131367). Xiaogang Jin was supported by the National Natural Science Foundation of China (Grant No. 61272298), and the Joint Research Fund for Overseas Chinese, Hong Kong and Macao Young Scientists of the National Natural Science Foundation of China (Grant No. 61328204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Zhang.

Appendix A: Other analytical solutions of Eq. (2)

Appendix A: Other analytical solutions of Eq. (2)

For \(\beta ^2=4\alpha \gamma \) and \(\alpha /\beta >0\), solving the nonlinear algebra equation (4), the following roots are found,

$$\begin{aligned} r_{1,2,3,4} =\pm iq_2 \end{aligned}$$
(24)

where \(i\) is an imaginary unit and,

$$\begin{aligned} q_2 =\sqrt{\beta /(2\alpha )} \end{aligned}$$
(25)

With the roots given in Eq. (24), the analytical solution to Eq. (2) becomes,

$$\begin{aligned} {\mathbf G}(u)={\mathbf d}_1 \cos q_2 u+{\mathbf d}_2 \sin q_2 u+{\mathbf d}_3 u\cos q_2 u+{\mathbf d}_4 u\sin q_2 u \end{aligned}$$
(26)

where \({\mathbf d}_1 \), \({\mathbf d}_2 \), \({\mathbf d}_3 \) and \({\mathbf d}_4 \) are vector-valued unknown constants.

To determine the unknown constants in Eq. (26), we perform the same sweeping operation by substituting it into Eq. (1), and solving for the four unknown constants \({\mathbf d}_1 \), \({\mathbf d}_2 \), \({\mathbf d}_3 \) and \({\mathbf d}_4 \). Then, we substitute the unknown constants back into Eq. (26), and obtain,

$$\begin{aligned} \begin{array}{l} {\mathbf S}(u,v)=( \cos q_2 u+A_2 \sin q_2 u-q_2 A_2 u\cos q_2 u\\ \qquad \qquad \quad -\,\, uctgq_2 \sin q_2 u \\ \qquad \qquad \quad +\,\, {A_2 A_5 u\sin q_2 u}){\mathbf C}_0 (v)\\ \qquad \qquad \quad +\,\, ( {A_3 \sin q_2 u+u\cos q_2 u-q_2 A_3 u\cos q_2 u} \\ \qquad \qquad \quad -\,\, uctgq_2 \sin q_2 u+ {A_3 A_5 u\sin q_2 u})\bar{{\mathbf {C}}}_0 (v)\\ \qquad \qquad \quad +\,\, ( {-A_4 \sin q_2 u+q_2 A_4 }u\cos q_2 u\\ \qquad \qquad \quad +\,\, {u\sin q_2 u} / {\sin q_2 }- {A_4 A_5 u\sin q_2 u}){\mathbf C}_1 (v)\\ \qquad \qquad \quad +\, \,( {\sin q_2 }u-q_2 u\cos q_2 u\!+\!A_5 u\sin q_2 u){\bar{{\mathbf {C}}}_1 (v)} / {A_1 } \\ \end{array} \end{aligned}$$
(27)

where,

$$\begin{aligned} \begin{array}{l} A_1 ={q_2 } / {\sin q_2 }-\sin q_2 \\ A_2 ={\left[ {q_2 \sin q_2 +ctgq_2 ( {\sin q_2 +q_2 \cos q_2 })} \right] } / {A_1 } \\ A_3 =\big [ -( {\cos q_2 -q_2 \sin q_2 })\\ \qquad \qquad +\, ctgq_2 ( {\sin q_2 +q_2 \cos q_2 }) \big ] / {A_1 } \\ A_4 ={( {\sin q_2 +q_2 \cos q_2 })} / {( {A_1 \sin q_2 })} \\ A_5 ={( {q_2 \cos q_2 -\sin q_2 })} / {\sin q_2 } \\ \end{array} \end{aligned}$$
(28)

For \(\beta ^2>4\alpha \gamma \), solving the nonlinear algebra equation (4) gives the following roots,

$$\begin{aligned} \begin{array}{l} r_{1,2} =\pm iq_3 \\ r_{3,4} =\pm iq_4 \\ \end{array} \end{aligned}$$
(29)

where\(i\) is an imaginary unit and,

$$\begin{aligned} \begin{array}{l} q_3 =\sqrt{\beta (1-\sqrt{1-4\alpha \gamma /\beta ^2} )/(2\alpha )} \\ q_4 =\sqrt{\beta (1+\sqrt{1-4\alpha \gamma /\beta ^2} )/(2\alpha )} \\ \end{array} \end{aligned}$$
(30)

With the roots given in Eq. (30), the analytical solution to Eq. (2) takes the form of,

$$\begin{aligned} {\mathbf G}(u)={\mathbf d}_1 \cos q_3 u+{\mathbf d}_2 \sin q_3 u+{\mathbf d}_3 \cos q_4 u+{\mathbf d}_4 \sin q_4 u\nonumber \\ \end{aligned}$$
(31)

where \({\mathbf d}_1 \), \({\mathbf d}_2 \), \({\mathbf d}_3 \) and \({\mathbf d}_4 \) are vector-valued unknown constants.

Same as above, we substitute Eq. (31) into Eq. (1), carry out the sweeping operation, and determine the four unknown constants \({\mathbf d}_1 \), \({\mathbf d}_2 \), \({\mathbf d}_3 \) and \({\mathbf d}_4 \). After substituting these unknown constants back to Eq. (31), the mathematical equation of blending surfaces becomes,

$$\begin{aligned} \begin{array}{l} {\mathbf S}(u,v)=\big [ -g_3 (u){\cos q_4 } / A_6 -g_4 (u){q_4 \sin q_4 } / A_6 \\ \quad \ \qquad \qquad +\cos q_4 u \big ]\\ \qquad \quad \qquad \ \times \, {\mathbf C}_0 (v)\big [ -g_3 (u){\sin q_4 } / {q_4 } / {A_6 }\\ \qquad \qquad \quad \ +\, g_4 (u){\cos q_4 } /{A_6 +{\sin q_4 u} / {q_4 }} \big ] \bar{{\mathbf {C}}}_0 (v)\\ \qquad \qquad \quad \ +\, {g_3 (u){\mathbf C}_1 (v)} / {A_6 -{g_4 (u)\bar{{\mathbf {C}}}_1 (v)} / {A_6 }} \\ \end{array}\nonumber \\ \end{aligned}$$
(32)

where,

$$\begin{aligned} \begin{array}{l} A_6 =q_3 ( {\cos q_3 -\cos q_4 })^2-( {\sin q_3 -{q_3 \sin q_4 }/ {q_4 }}) \\ ( {q_4 \sin q_4 -q_3 \sin q_3 }) \\ \end{array} \end{aligned}$$
(33)

and,

$$\begin{aligned} \begin{array}{l} g_3 (u)=q_3 ( {\cos q_3 -\cos q_4 })( {\cos q_3 u-\cos q_4 u}) \\ \qquad \qquad \quad +\, ( {q_4 \sin q_4 }- {q_3 \sin q_3 })( {q_3 {\sin q_4 u} / {q_4 }-\sin q_3 u}) \\ g_4 (u)=( {\cos q_3 -\cos q_4 })( {q_3 {\sin q_4 u} / {q_4 }-\sin q_3 u}) \\ \qquad \qquad \quad +\, ( {\sin q_3 }- q_3 {{\sin q_4 } / {q_4 }})( {\cos q_3 u-\cos q_4 u}) \\ \end{array}\nonumber \\ \end{aligned}$$
(34)

For \(\beta ^2<4\alpha \gamma \), solving the nonlinear algebra equation (4) generates the four roots below,

$$\begin{aligned} r_{1,2,3,4} =\pm q_5 \pm iq_6 \end{aligned}$$
(35)

where\(i\) is an imaginary unit and,

$$\begin{aligned} \begin{array}{l} q_5 =\root 4 \of {\gamma / \alpha }\sqrt{0.5-\beta / {( {4\sqrt{\alpha \gamma } })}} \\ q_6 =\root 4 \of {\gamma / \alpha }\sqrt{0.5+\beta / {( {4\sqrt{\alpha \gamma } })}} \\ \end{array} \end{aligned}$$
(36)

With the roots given in Eq. (36), the solution to Eq. (2) is found to be,

$$\begin{aligned} {\mathbf G}(u)&= {\mathbf d}_1 e^{q_5 u}\cos q_6 u+{\mathbf d}_2 e^{q_5 u}\sin q_6 u+{\mathbf d}_3 e^{-q_5 u}\cos q_6 u \nonumber \\&+\, {\mathbf d}_4 e^{-q_5 u}\sin q_6 u \end{aligned}$$
(37)

where \({\mathbf d}_1 \) , \({\mathbf d}_2 \), \({\mathbf d}_3 \)and \({\mathbf d}_4 \) are vector-valued unknown constants.

Substituting Eq. (37) into Eq. (1) and doing the sweeping operation, the 4 unknown constants are determined and blending surfaces satisfying Eqs. (1) and (2) are found to be,

$$\begin{aligned} {\mathbf S}(u,v)&= \big [ {-A_9 g_5 (u)}/ q_6 -( {{A_7 q_5 } /{q_6 -A_8 }})g_6 (u)\nonumber \\&\quad +\, e^{-q_5 u}\cos q_6 u {+q_5 e^{-q_5 u}{\sin q_6 u} / {q_6 }}\big ]{\mathbf C}_0 (v)\nonumber \\&\quad +\, \left[ {{-A_7 g_6 (u)} / {q_6 -e^{-q_5 }}} {\sin q_6 g_5 (u)} / {q_6 }\right. \nonumber \\&\quad \left. {+e^{-q_5 u}{\sin q_6 u} / {q_6 }} \right] \bar{\mathbf {C}}_0 (v)+\, g_5 (u){\mathbf C}_1 (v) \nonumber \\&\quad +g_6 (u)\bar{{\mathbf {C}}}_1 (v) \end{aligned}$$
(38)

where,

$$\begin{aligned} \begin{array}{l} A_7 =q_6 e^{-q_5 }\cos q_6 -q_5 e^{-q_5 }\sin q_6 \\ A_8 =q_5 e^{-q_5 }\cos q_6 +q_6 e^{-q_5 }\sin q_6 \\ A_9 =q_5 e^{-q_5 }\sin q_6 +q_6 e^{-q_5 }\cos q_6 \\ g_5 (u)=\left\{ {A_{12} \left[ {( {e^{-q_5 u}-e^{q_5 u}})\sin q_6 u} \right] } \right. \\ \qquad \qquad +A_{13} \left[ {( {e^{q_5 u}-e^{-q_5 u}})\cos q_6 u} \right. \\ \qquad \qquad {\left. {\left. {-2q_5 e^{-q_5 u}{\sin q_6 u} /{q_6 }} \right] } \right\} } / {A_{14} } \\ g_6 (u)=\left\{ {A_{10} \left[ {( {e^{q_5 u}-e^{-q_5 u}})\sin q_6 u} \right] } \right. \\ \qquad \qquad +A_{11} \left[ {( {e^{-q_5 u}-e^{q_5 u}})\cos q_6 u} \right. \\ \qquad \qquad {\left. {\left. {+2q_5 e^{-q_5 u}{\sin q_6 u} /{q_6 }} \right] } \right\} } / {A_{14} } \\ \end{array} \end{aligned}$$
(39)

and,

$$\begin{aligned} \begin{array}{l} A_{10} =( {e^{q_5 }-e^{-q_5 }})\cos q_6 -2q_5 e^{-q_5 }{\sin q_6 }/ {q_6 } \\ A_{11} =( {e^{q_5 }-e^{-q_5 }})\sin q_6 \\ A_{12} =( {q_5 \cos q_6 -q_6 \sin q_6 })e^{q_5 }+A_8 -2q_5 {A_7 }/{q_6 } \\ A_{13} =( {q_5 \sin q_6 +q_6 \cos q_6 })e^{q_5 }-A_9 \\ A_{14} =A_{10} A_{13} -A_{11} A_{12} \\ \end{array} \end{aligned}$$
(40)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, L.H., Ugail, H., Tang, B.P. et al. Blending using ODE swept surfaces with shape control and \(C^1\) continuity. Vis Comput 30, 625–636 (2014). https://doi.org/10.1007/s00371-014-0950-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-014-0950-5

Keywords

Navigation