Skip to main content
Log in

Lossy volume compression using Tucker truncation and thresholding

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Tensor decompositions, in particular the Tucker model, are a powerful family of techniques for dimensionality reduction and are being increasingly used for compactly encoding large multidimensional arrays, images and other visual data sets. In interactive applications, volume data often needs to be decompressed and manipulated dynamically; when designing data reduction and reconstruction methods, several parameters must be taken into account, such as the achievable compression ratio, approximation error and reconstruction speed. Weighing these variables in an effective way is challenging, and here we present two main contributions to solve this issue for Tucker tensor decompositions. First, we provide algorithms to efficiently compute, store and retrieve good choices of tensor rank selection and decompression parameters in order to optimize memory usage, approximation quality and computational costs. Second, we propose a Tucker compression alternative based on coefficient thresholding and zigzag traversal, followed by logarithmic quantization on both the transformed tensor core and its factor matrices. In terms of approximation accuracy, this approach is theoretically and empirically better than the commonly used tensor rank truncation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Real world medical data sets. (2014). http://volvis.org/

  2. Andrews, H.C., Patterson, C.I.: Singular value decomposition (SVD) image coding. Commun. IEEE Trans. 24(4), 425–432 (1976)

    Article  Google Scholar 

  3. Bader, B.W., Kolda, T.G. et al.: MATLAB tensor toolbox version 2.5. (2012). http://www.sandia.gov/tgkolda/TensorToolbox/

  4. Ballester-Ripoll, R., Suter, S.K., Pajarola, R.: Analysis of tensor approximation for compression-domain volume visualization. Comput. Graph. 47, 34–47 (2015)

    Article  Google Scholar 

  5. Bilgili, A., Öztürk, A., Kurt, M.: A general BRDF representation based on tensor decomposition. Comput. Graph. Forum 30(8), 2427–2439 (2011)

    Article  Google Scholar 

  6. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an \(n\)-way generalization of “Eckart-Young” decompositions. Psychometrika 35(3), 283–319 (1970)

    Article  MATH  Google Scholar 

  7. Chan, T.F., Zhou, H.M.: Total variation improved wavelet thresholding in image compression. In: ICIP, pp. 391–394 (2000)

  8. Chen, H., Lei, W., Zhou, S., Zhang, Y.: An optimal-truncation-based tucker decomposition method for hyperspectral image compression. In: IGARSS, pp. 4090–4093 (2012)

  9. Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Problems 27(2), 025010 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hackbusch, W.: Tensor spaces and numerical tensor calculus. Springer series in computational mathematics, vol. 42. Springer, Heidelberg (2012)

  11. International Organization for Standardization: ISO/IEC 10918–1:1994: Information technology—digital compression and coding of continuous-tone still images: requirements and guidelines. International Organization for Standardization, Geneva (1994)

  12. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kressner, D., Steinlechner, M., Vandereycken, B.: Low-rank tensor completion by Riemannian optimization. BIT Numer. Math. 54(2), 447–468 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kurt, M., Öztürk, A., Peers, P.: A compact tucker-based factorization model for heterogeneous subsurface scattering. In: Proceedings of the 11th Theory and Practice of Computer Graphics, TPCG ’13, pp. 85–92 (2013)

  15. de Lathauwer, L., de Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. de Lathauwer, L., de Moor, B., Vandewalle, J.: On the best rank-1 and rank-\((R_1, R_2,., R_N\)) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324–1342 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pajarola, R., Suter, S.K., Ruiters, R.: Tensor approximation in visualization and computer graphics. In: Eurographics 2013—Tutorials, t6. Eurographics Association, Girona (2013)

  18. Rajwade, A., Rangarajan, A., Banerjee, A.: Image denoising using the higher order singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 849–862 (2013)

    Article  Google Scholar 

  19. Rövid, A., Rudas, I.J., Sergyán, S., Szeidl, L.: Hosvd based image processing techniques. In: Proceedings of the 10th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases, AIKED’11, pp. 297–302. World Scientific and Engineering Academy and Society (WSEAS), Stevens Point (2011)

  20. Sun, X., Zhou, K., Chen, Y., Lin, S., Shi, J., Guo, B.: Interactive relighting with dynamic brdfs. ACM Trans. Graph. 26(3) (2007)

  21. Suter, S.K., Iglesias Guitián, J.A., Marton, F., Agus, M., Elsener, A., Zollikofer, C.P., Gopi, M., Gobbetti, E., Pajarola, R.: Interactive multiscale tensor reconstruction for multiresolution volume visualization. IEEE Trans. Vis. Comput. Graph. 17(12), 2135–2143 (2011)

    Article  Google Scholar 

  22. Suter, S.K., Makhynia, M., Pajarola, R.: TAMRESH: tensor approximation multiresolution hierarchy for interactive volume visualization. Comput. Graph. Forum 32(3), 151–160 (2013)

    Article  Google Scholar 

  23. Suter, S.K., Zollikofer, C.P., Pajarola, R.: Application of tensor approximation to multiscale volume feature representations. In: Proceedings Vision, Modeling and Visualization, pp. 203–210 (2010)

  24. Tan, H., Cheng, B., Feng, J., Feng, G., Wang, W., Zhang, Y.J.: Low-n-rank tensor recovery based on multi-linear augmented lagrange multiplier method. Neurocomputing 119(0), 144–152 (2013). Intelligent Processing Techniques for Semantic-based Image and Video Retrieval

    Article  Google Scholar 

  25. Treib, M., Bürger, K., Reichl, F., Meneveau, C., Szalay, A., Westermann, R.: Turbulence visualization at the terascale on desktop PCs. IEEE Trans. Vis. Comput. Graph. (Proc. Scientific Visualization 2012) 18(12), 2169–2177 (2012)

    Article  Google Scholar 

  26. Tsai, Y.T., Shih, Z.C.: All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation. ACM Trans. Graph. 25(3), 967–976 (2006)

    Article  Google Scholar 

  27. Tsai, Y.T., Shih, Z.C.: K-clustered tensor approximation: a sparse multilinear model for real-time rendering. ACM Trans. Graph. 31(3) (2012)

  28. Vannieuwenhoven, N., Vandebril, R., Meerbergen, K.: A new truncation strategy for the higher-order singular value decomposition. SIAM J. Sci. Comput. 34(2), 1027–1052 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vasilescu, M.A.O., Terzopoulos, D.: TensorTextures: multilinear image-based rendering. ACM Trans. Graph. 23(3), 336–342 (2004)

    Article  Google Scholar 

  30. Wang, H., Ahuja, N.: Rank-R approximation of tensors: using image-as-matrix representation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 346–353 (2005)

  31. Wang, H., Wu, Q., Shi, L., Yu, Y., Ahuja, N.: Out-of-core tensor approximation of multi-dimensional matrices of visual data. ACM Trans. Graph. 24(3), 527–535 (2005)

    Article  Google Scholar 

  32. Wu, Q., Chen, C., Yu, Y.: Wavelet-based hybrid multilinear models for multidimensional image approximation. In: Proceedings IEEE International Conference on Image Processing, pp. 2828–2831 (2008)

  33. Wu, Q., Xia, T., Chen, C., Lin, H.Y.S., Wang, H., Yu, Y.: Hierarchical tensor approximation of multidimensional visual data. IEEE Trans. Vis. Comput. Graph. 14(1), 186–199 (2008)

    Article  Google Scholar 

  34. Wu, Q., Xia, T., Yu, Y.: Hierarchical tensor approximation of multidimensional images. In: Proceedings of the IEEE International Conference in Image Processing, vol. 4, pp. IV-49–IV-52 (2007)

  35. Zaid, A., Olivier, C., Alata, O., Marmoiton, F.: Transform image coding with global thresholding: application to baseline jpeg. In: Proceedings of the XIV Brazilian Symposium on Computer Graphics and Image Processing, pp. 164–171 (2001)

Download references

Acknowledgments

We acknowledge the Computer-Assisted Paleoanthropology group and the Visualization and MultiMedia Lab at University of Zurich for the acquisition of the Wood micro-CT data set.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Ballester-Ripoll.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballester-Ripoll, R., Pajarola, R. Lossy volume compression using Tucker truncation and thresholding. Vis Comput 32, 1433–1446 (2016). https://doi.org/10.1007/s00371-015-1130-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1130-y

Keywords

Navigation