Skip to main content
Log in

Physicochemical, including spectroscopic, and biological analyses during composting of green tea waste and rice bran

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The aims of this study were to monitor the changes in physicochemical, including spectroscopic, and biological characteristics during composting of green tea waste–rice bran compost (GRC) and to define parameters suitable for evaluating the stability of GRC. Compost pile temperature reflected the initiation and stabilization of the composting process. The pH, electrical conductivity, NO3 -N content, and carbon-to-nitrogen ratio were measured as chemical properties of the compost. The color (CIELAB variables), humification index (the absorption ratio Q 4/6 = A 472 / A 664 of 0.5 M NaOH extracts), absorption at 665 nm of acetone extracts, and Fourier-transform infrared (FT-IR) spectra were measured to evaluate the organic matter transformation; germination of komatsuna or tomato seeds was measured to assess the potential phytotoxicity of composting materials during composting. No single parameter was capable of giving substantial information on the composting process, the nutrient balance, phytotoxicity, and organic matter decomposition. The FT-IR spectra at 3,300, 2,930, 2,852, and 1,065 cm−1 provided information on the molecular transformation of GRC during composting and they decreased over the composting. Most of the assayed parameters showed no further change after about 90 days of composting suggesting that GRC can be used for agricultural purposes after this period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Benito M, Masaguer A, Moliner A, Arrigo N, Palma RM (2003) Chemical and microbiological parameters for the characterization of the stability and maturity of pruning waste compost. Biol Fertil Soils 37:184–189

    CAS  Google Scholar 

  • Bernal MP, Paredes C, Sanchez-Monedero MA, Cegarra J (1998) Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresour Technol 63:91–99 doi:10.1016/S0960-8524(97)00084-9

    Article  CAS  Google Scholar 

  • Brinton WF, Droffner MD (1994) Test kits for determining the chemical stability of a compost sample. US Patent 5320807

  • Castaldi P, Alberti G, Merella R, Melis P (2005) Study of the organic matter evolution during municipal solid waste composting aimed at identifying suitable parameters for the evaluation of compost maturity. Waste Manag 25:209–213 doi:10.1016/j.wasman.2004.12.011

    Article  PubMed  CAS  Google Scholar 

  • CIE (1986) Colorimetry. Publication 15.2, 2nd edn. Commission Internationale de I`Eclairage Central Bureau, Vienna

    Google Scholar 

  • CIE (1995) Industrial color-difference evaluation. Technical report 116/1995 edn. Commission Internationale de I`Eclairage Central Bureau, Vienna

    Google Scholar 

  • Finstein MS, Miller FC (1985) Principles of composting leading to maximization of decomposition rate, odor control, and cost effectiveness. In: Gasser JKR (ed) Composting of agricultural and other wastes. Elsevier Applied Science, Barking, pp 13–20

    Google Scholar 

  • Gieguzyńska E, Koćmit A, Gołębiewska D (1998) Studies on humic acids in eroded soils of Western Pomerania. In: Zaujec A, Bielek P, Gonet SS (eds) Humic substances in ecosystems. Slovak Agricultural University, Nitra, pp 35–41

    Google Scholar 

  • Grube M, Lin JG, Lee PH, Kokorevicha S (2006) Evaluation of sewage sludge-based compost by Ft-IR spectroscopy. Geoderma 130:324–333 doi:10.1016/j.geoderma.2005.02.005

    Article  CAS  Google Scholar 

  • Hach Company (1995a) Method 8171. Cadmium reduction method. In: DR/2000 spectrophotometer procedures manual. Hach Company, Loveland, CO, pp 337–344

  • Hach Company (1995b) Method 8075. Total Kjeldahl method. In: DR/2000 spectrophotometer procedures manual. Hach Company, Loveland, CO, pp 421–426

  • Hoyt PB (1966) Chlorophyll-type compounds in soil II. Their decomposition. Plant Soil 25:313–328 doi:10.1007/BF01394456

    Article  CAS  Google Scholar 

  • Hsu J-H, Lo S-L (1999) Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure. Environ Pollut 104:189–196 doi:10.1016/S0269-7491(98)00193-6

    Article  CAS  Google Scholar 

  • Iglesias Jiménez E, Pérez García V (1992) Determination of maturity indices for city refuse composts. Agric Ecosyst Environ 38:331–343 doi:10.1016/0167-8809(92)90154-4

    Article  Google Scholar 

  • Inubushi K, Wada H, Takai Y (1982) Easily decomposable organic matter in paddy soils. II. Chlorophyll-type compounds in Apg horizons. Jpn J Soil Sci Plant Nutr 53:277–282

    CAS  Google Scholar 

  • ITC (2006) Annual bulletin of statistics. International Tea Committee, London http://www.inttea.com

    Google Scholar 

  • Khan MAI, Ueno K, Horimoto S, Komai F, Tanaka K, Ono Y (2007a) Evaluation of the physio-chemical and microbial properties of green tea waste–rice bran compost and the effect of the compost on spinach production. Plant Prod Sci 10:391–399 doi:10.1626/pps.10.391

    Article  CAS  Google Scholar 

  • Khan MAI, Ueno K, Horimoto S, Komai F, Tanaka K, Ono Y (2007b) Evaluation of the use of rice bran compost for eco-friendly weed control in organic farming systems. Am J Environ Sci 3:234–239

    Google Scholar 

  • Khan MAI, Ueno K, Horimoto S, Komai F, Tanaka K, Ono Y (2007c) Evaluation of the upland weed control potentiality of green tea waste–rice bran compost and its effect on spinach growth. Am J Agril Biol Sci 2:142–148

    Google Scholar 

  • Ko HJ, Km KY, Kim HT, Kim CN, Umeda M (2008) Evaluation of maturity parameters and heavy metal contents in composts made from animal manure. Waste Manag 28:813–820 doi:10.1016/j.wasman.2007.05.010

    Article  PubMed  CAS  Google Scholar 

  • Kondo M, Kita K, Yokota H (2004) Effects of tea leaf waste of green tea, oolong tea, and black tea addition on Sudan grass silage quality and in vitro gas production. J Sci Food Agric 84:721–727 doi:10.1002/jsfa.1718

    Article  CAS  Google Scholar 

  • Mathur SP, Owen G, Dinel H, Schnitzer M (1993) Determination of compost biomaturity. I. Literature review. Biol Agric Hortic 10:65–85

    Google Scholar 

  • Meissl K, Smidt E, Schwanninger M (2007) Prediction of humic acid content and respiration activity of biogenic waste by means of Fourier transform infrared (FTIR) spectra and partial least squares regression (PLS-R) models. Talanta 72:791–799 doi:10.1016/j.talanta.2006.12.005

    Article  PubMed  CAS  Google Scholar 

  • Meunchang S, Panichsakpatana S, Weaver RW (2005) Co-composting of filter cake and bagasse; by-products from a sugar mill. Bioresour Technol 96:437–442 doi:10.1016/j.biortech.2004.05.024

    Article  PubMed  CAS  Google Scholar 

  • Michel FC Jr, Reddy CA (1998) Effect of oxygenation level on yard trimming composting rate, odor production, and compost quality in bench-scale reactors. Compost Sci Util 4:6–14

    Google Scholar 

  • Mondini C, Dell’Abate MT, Leita L, Benedetti A (2003) An integrated chemical, thermal, and microbiological approach to compost stability evaluation. J Environ Qual 32:2379–2386

    Article  PubMed  CAS  Google Scholar 

  • Nagaoka T, Umezu K, Kouno K, Yoshida S, Ishiguro Y, Ando T (1996) Selective inhibitors of germination of legume seeds in activated sludge compost. Plant Growth Regul 20:295–302 doi:10.1007/BF00043321

    Article  CAS  Google Scholar 

  • Nakasaki K, Shoda M, Kubota H (1985) Effect of temperature on composting of sewage sludge. Appl Environ Microbiol 50:1526–1530

    PubMed  CAS  Google Scholar 

  • Rajbanshi SS, Inubushi K (1998) Chemical and biochemical changes during laboratory-scale composting of allelopathic plant leaves (Eupatorium adenophorum and Lantana camara). Biol Fertil Soils 26:66–71

    CAS  Google Scholar 

  • Sánchez-Marañỏn M, Delgado G, Melgosa M, Hita E, Delgado R (1997) CIELAB colour parameters and their relationship to soil characteristics in Mediterranean red soils. Soil Sci 162:833–842

    Article  Google Scholar 

  • Smidt E, Meissl K (2007) The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manage 27:268–276

    Article  CAS  Google Scholar 

  • Smidt E, Eckhardt K, Lechner P, Schulten H, Leinweber P (2005) Characterization of different decomposition stages of biowaste using FT-IR spectroscopy and pyrolysis-field ionization mass spectrometry. Biodegradation 16:67–79

    Article  PubMed  CAS  Google Scholar 

  • Smith BC (1999) Infrared spectral interpretation. CRC Press, Boca Raton

    Google Scholar 

  • Tam NFY, Tiquia SM (1994) Assessing toxicity of spent pig litter using a seed germination technique. Resour Conserv Recycl 11:261–274

    Article  Google Scholar 

  • Tiquia SM, Tam NFY (2002) Characterization and composting of poultry litter in forced-aeration piles. Process Biochem 37:869–880

    Article  CAS  Google Scholar 

  • Tiquia SM, Tam NFY, Hodgkiss IJ (1996) Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environ Pollut 93:249–256

    Article  PubMed  CAS  Google Scholar 

  • Tognetti C, Mazzarino MJ, Laos F (2007) Cocomposting biosolids and municipal organic waste: effects of process management on stabilization and quality. Biol Fertil Soils 43:387–397

    Article  CAS  Google Scholar 

  • Tyurin IV (1931) A modification of a volumetric method of humus determination with chromic acid. Pochvovedenie 5–6:36

    Google Scholar 

  • Wong MH (1985) Phytotoxicity of refuse compost during the process of maturation. Environ Pollut 40:127–144

    Google Scholar 

  • Wong JWC, Mak KF, Chan NW, Lam A, Fang M, Zhou LX, Wu QT, Liao XD (2001) Co-composting of soybean residues and leaves in Hong Kong. Bioresour Technol 76:99–106

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Ma LQ (2001) Effects of sample storage on biosolids compost stability and maturity evaluation. J Environ Qual 30:222–228

    Article  PubMed  CAS  Google Scholar 

  • Zbytniewski R, Buszewski B (2005) Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 1: chemical and spectroscopic properties. Bioresour Technol 96:471–478

    Article  PubMed  CAS  Google Scholar 

  • Zucconi F, Pera A, Forte M, deBertoldi M (1981) Evaluating toxicity of immature compost. BioCycle 22:54–57

    Google Scholar 

Download references

Acknowledgments

We are grateful to the Ministry of Education, Culture, Sports, Science, and Technology, Japan for providing a scholarship to Mohammad Ashik Iqbal Khan and thankful to the JA Beverage, Saga Co. Ltd. for providing green tea waste. We are also grateful to Prof. Dr. Kazuo Morita, Faculty of Agriculture, Kagoshima University and Dr. Takashi Someya, Laboratory of Soil Microbiology, Faculty of Agriculture, Saga University, Japan for their valuable suggestions in the writing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kihachi Ueno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M.A.I., Ueno, K., Horimoto, S. et al. Physicochemical, including spectroscopic, and biological analyses during composting of green tea waste and rice bran. Biol Fertil Soils 45, 305–313 (2009). https://doi.org/10.1007/s00374-008-0335-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-008-0335-x

Keywords

Navigation