Skip to main content
Log in

Effects of intercropping and Rhizobium inoculation on yield and rhizosphere bacterial community of faba bean (Vicia faba L.)

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The effects of intercropping with maize and Rhizobium inoculation on the yield of faba bean and rhizosphere bacterial diversity were analyzed by terminal restriction fragment length polymorphism, amplified 16S rDNA restriction analysis (ARDRA), and 16S rDNA sequencing. The results showed that intercropping but not Rhizobium inoculation significantly increased the faba bean yield. Probably the relatively high level of native rhizobia in soil annulled the effect of rhizobia inoculation. ARDRA results showed that intercropping did not affect bacterial diversity whereas Rhizobium inoculation decreased bacterial diversity. The canonical correspondence analysis showed that the composition of bacterial community was changed apparently by intercropping, and there was a positive correlation (P = 0.724) between faba bean yields and intercropping and an apparent correlation (P = 0.648) between intercropping and total N. The available content of K and P had a lower effect on the bacterial community composition than did the total N content, Rhizobium inoculation, and microbial biomass C. Rhizobium inoculation negatively correlated with microbial biomass C (P = −0.827). These results revealed a complex interaction among the intercropped crops, inoculation with rhizobia, and indigenous bacteria and implied that the increase of faba bean production in intercropping might be related to the modification of rhizosphere bacterial community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alkorta I, Amezaga I, Albizu I, Aizpurua A, Onaindia M, Buchner V, Garbisu C (2003) Molecular microbial biodiversity assessment: a biological indicator of soil health. Rev Environ Health 18:131–151

    CAS  PubMed  Google Scholar 

  • Arriagada CA, Herrera MA, Ocampo JA (2007) Beneficial effect of saprobe and arbuscular mycorrhizal fungi on growth of Eucalyptus globulus co-cultured with Glycine max in soil contaminated with heavy metals. J Environ Manage 84:93–99. doi:10.1016/j.jenvman.2006.05.005

    Article  CAS  PubMed  Google Scholar 

  • Balota EL, Colozzi-Filho A, Andrade DS, Dick RP (2003) Microbial biomass in soils under different tillage and crop rotation systems. Biol Fertil Soils 38:15–20. doi:10.1007/s00374-003-0590-9

    Article  Google Scholar 

  • Bandyopadhyay SK, De R (1986) N relationship in a legume non-legume association grown in an intercropping system. Fert Res 10:73–82. doi:10.1007/BF01073906

    Article  Google Scholar 

  • Boucher DH, Espinosa J (1982) Cropping system and growth and nodulation responses of beans to nitrogen in Tabasco, Mexico. Trop Agr 59:279–282

    Google Scholar 

  • Bowman JP, McCuaig RD (2003) Biodiversity, community structural shift, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 69:2463–2483. doi:10.1128/AEM.69.5.2463-2483.2003

    Article  CAS  PubMed  Google Scholar 

  • Davelos AL, Xiao K, Samac DA, Martin AP, Kinkel LL (2004) Spatial variation in Streptomyces genetic composition and diversity in a prairie soil. Microb Ecol 48:601–612. doi:10.1007/s00248-004-0031-9

    Article  CAS  PubMed  Google Scholar 

  • De Ridder-Duine AS, Kowalchuk GA, Klein Gunnewiek PJA, Smant W, Van Een JA, de Boer W (2005) Rhizosphere bacterial community composition in natural stands of Carex arenaria (sand sedge) is determined by bulk soil community composition. Soil Biol Biochem 37:349–357. doi:10.1016/j.soilbio.2004.08.005

    Article  Google Scholar 

  • Di Cello FD, Bevivino A, Chiarini L, Fani R, Paffetti D, Tabacchioni S, Dalmastri C (1997) Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl Environ Microbiol 63:4485–4493. doi:0099-2240/97/$04.0010

    PubMed  Google Scholar 

  • Dunbar J, Ticknor LO, Kuske CR (2001) Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Appl Environ Microbiol 67:190–197. doi:10.1128/AEM.67.1.190-197.2001

    Article  CAS  PubMed  Google Scholar 

  • Franchini JC, Crispino CC, Souza RA, Torres E, Hungaria M (2007) Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern Brazil. Soil Till Res 92:18–29. doi:10.1016/j.still.2005.12.010

    Article  Google Scholar 

  • Good IL (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264. doi:10.2307/2333344

    Google Scholar 

  • Grayston SJ, Wang SQ, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378. doi:10.1016/S0038-0717(97)00124-7

    Article  CAS  Google Scholar 

  • Hanway JJ, Heidal H (1952) Soil analysis methods used in Iowa State College, 57th edn. Soil Testing Laboratory, Iowa Agron, pp 1–31. doi:10.1016/S0038-0717(97)00124-7

    Google Scholar 

  • Hao YR, Lao XR, Sun WH, Peng SL (2003) Interaction of roots and rhizosphere in the wheat/maize intercropping system. J Ecol Rural Environ 19:18–22

    Google Scholar 

  • Hungria M, Vargas MAT (2000) Environmental factors affecting N2 fixation in grain leguminous in the tropics, with an emphasis on Brazil. Field Cr Res 65:151–164. doi:10.1016/S0378-4290(99)00084-2

    Article  Google Scholar 

  • Junier P, Junier T, Witzel KP, Caru M (2009) Composition of diazotrophic bacterial assemblages in bean-planted soil compared to unplanted soil. Eur J Soil Sci 45:153–162. doi:10.1016/j.ejsobi.2008.10.002

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Amil M (1997) Associative effect of Bradyrhizobium sp. (Vigna) and phosphate solubilizing bacteria on mungbean [Vigna radiata (L.) Wilczek]. Biojounal 9:101–106

    Google Scholar 

  • Kjeldahl J (1883) Neue methode zur bestimmung des stickstoffs in organischen körpern. Z Anal Chem 22:366–382. doi:10.1007/BF01338151

    Article  Google Scholar 

  • Lerner A, Herschkovitz Y, Baudoin E, Nazaret S, Loccoz YM, Okon Y, Edouard J (2006) Effect of Azospirillum brasilense inoculation on rhizobacterial communities analyzed by denaturing gradient gel electrophoresis and automated ribosomal intergenic spacer analysis. Soil Biol Biochem 38:1212–1218. doi:10.1016/j.soilbio.2005.10.007

    Article  CAS  Google Scholar 

  • Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci USA 104:11192–11196. doi:10.1073/pnas.0704591104

    Article  CAS  PubMed  Google Scholar 

  • Li HG, Shen JB, Zhang FS, Marschner P, Cawthray G, Rengel Z (2010) Phosphorus uptake and rhizosphere properties of intercropped and monocropped maize, faba bean, and white lupin in acidic soil. Biol Fertil Soils 46:79–91

    Article  CAS  Google Scholar 

  • Nielsen MN, Winding A (2002) Microorganisms as indicators of soil health. Ministry of the Environment, National Environmental Research Institute, Denmark

    Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939

  • Park S, Ku YK, Seo MJ, Kim DY, Yeon JE, Jeong SC, Yoon WK, Kim HM (2006) The characterization of bacterial community structure in the rhizosphere of watermelon (Citrullus vulgaris Schard.) using culture-based approaches and terminal fragment length polymorphism (T-RFLP). Appl Soil Ecol 33:79–86. doi:10.1016/j.apsoil.2005.08.006

    Article  Google Scholar 

  • Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144. doi:10.1016/0022-5193(66)90013-0

    Article  Google Scholar 

  • Ravenschlag K, Sahm K, Pernthaler J, Amann R (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65:3982–3989

    CAS  PubMed  Google Scholar 

  • Rooney DC, Clipson N (2008) Impact of sheep urine deposition and plant species on ammonia-oxidizing bacteria in upland grassland soil. Can J Microbiol 54:791–796. doi:10.1139/W08-065

    Article  CAS  PubMed  Google Scholar 

  • Saini VK, Bhandari SC, Tarafdar JC (2004) Comparison of crop yield, soil microbial C, N and P, N-fixation, nodulation and mycorrhizal infection in inoculated and non-inoculated sorghum and chickpea crops. Field Cr Res 89:39–47. doi:10.1016/j.fcr.2004.01.013

    Article  Google Scholar 

  • Sandnes A, Eldhuset TD, Wollebæk G (2005) Organic acids in root exudates and soil solution of Norway spruce and silver birch. Soil Biol Biochem 37:259–269. doi:10.1016/j.soilbio.2004.07.036

    Article  CAS  Google Scholar 

  • Singh BK, Munro S, Potts JM, Millard P (2007) Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Appl Soil Ecol 36:147–155. doi:10.1016/j.apsoil.2007.01.004

    Article  Google Scholar 

  • Smith CJ, Danilowicz BS, Clear AK, Costello FJ, Wilson B, Meijer WG (2005) T-Align, a web-based tool for comparison of multiple terminal restriction fragment length polymorphism profiles. FEMS Microbiol Ecol 54:375–380. doi:10.1016/j.femsec.2005.05.002

    Article  CAS  PubMed  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, San Francisco. doi:10.1007/0-387-28021-9_6

    Google Scholar 

  • Song YN, Zhang FS, Marschner P, Fan FL, Gao HM, Bao XG, Sun JH, Li L (2007) Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Biol Fert Soils 43:565–574. doi:10.1007/s00374-006-0139-9

    Article  CAS  Google Scholar 

  • Stolp H (1988) Microbial ecology: habitats, activities. Cambridge University Press, Cambridge, pp 221–223. doi:10.1016/0769-2609(88)90090-7

    Google Scholar 

  • Thies JE, Singleton PW, Bohlool BB (1991) Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced rhizobia on field-grown legumes. Appl Environ Microbiol 57:19–28. doi:0099-2240/91/010019-10.00/0

    CAS  PubMed  Google Scholar 

  • Thompson JR, Marcelino LA, Polz MF (2002) Heteroduplexes in mixed-template amplification: formation, consequence and elimination by ‘reconditioning PCR’. Nucleic Acids Res 30:2083–2088. doi:10.1093/nar/30.9.2083

    Article  CAS  PubMed  Google Scholar 

  • Tobita S, Ito O, Matsunaga R, Rao TP, Rego TJ, Johansen C, Yoneyama T (1994) Field evaluation of nitrogen fixation and use of nitrogen fertilizer by sorghum/pigeonpea intercropping on an Alfisol in the Indian semi-arid tropics. Biol Fert Soils 17:241–248. doi:10.1007/BF00383976

    Article  Google Scholar 

  • Tomasi N, Weisskopf L, Renella G, Landi L, Pinton R, Varanini Z, Nannipieri P, Torrent J, Martinoia E, Cesco S (2008) Flavonoids of white lupin roots participate in phosphorus mobilization from soil. Soil Biol Biochem 40:1971–1974. doi:10.1016/j.soilbio.2008.02.017

    Article  CAS  Google Scholar 

  • Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787. doi:0099-2240/90/030776-06.00/0

    CAS  PubMed  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707. doi:10.1016/0038-0717(87)90052-6

    Article  CAS  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root-nodule bacteria. Blackwell, Oxford. doi:10.2307/2402718

    Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38. doi:10.1097/00010694-193401000-00003

    Article  CAS  Google Scholar 

  • Xiao YB, Li L, Zhang FS (2004) Effect of root contact on interspecific competition and N transfer between wheat and faba bean using direct and indirect 15N techniques. Plant Soil 262:45–54. doi:10.1023/B:PLSO.0000037019.34719.0d

    Article  CAS  Google Scholar 

  • Zhou JZ, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322. doi:0099-2240/96/$04.00±0

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Basic Research (973) program of China (project no. 2006CB100206). We thank Mr. Jian Hao Sun and Professor Xing Guo Bao for technical assistance. The field experiments were performed with the assistance from the Institute of Soil Science and Fertilizers, Gansu Academy of Agricultural Sciences. Ms. Hui Min Gao helped us in the sample collection. We thank Professor Kate Scow for her valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Li Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, N.N., Sun, Y.M., Li, L. et al. Effects of intercropping and Rhizobium inoculation on yield and rhizosphere bacterial community of faba bean (Vicia faba L.). Biol Fertil Soils 46, 625–639 (2010). https://doi.org/10.1007/s00374-010-0469-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-010-0469-5

Keywords

Navigation