Skip to main content
Log in

Effects of climatic factors and soil management on the methane flux in soils from annual and perennial energy crops

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Methane flux rates were measured on a loamy sand soil within perennial and annual energy crops in northeast Germany. The study was performed in closed chambers between 2003 and 2005 with four measurements per week. A mixed linear model including the fixed effects of year, rotation period, crop and fertilisation was applied to determine the influence of climatic factors and soil management on the CH4 flux. Soil water content and air temperature were added as co-variables. With the exception of air temperature, all fixed effects and the co-variable soil water content influenced the CH4 flux. The soil of annual crops consumed 6.1 μg CH4 m−2 h−1, significantly more than the soil of perennial crops with 4.3 μg CH4 m−2 h−1. It is suggested that soil water content plays the key role in CH4 flux between pedosphere and atmosphere. In the range of water contents between 5% and 15%, our model describes that a soil water content increase of 1% induces a net emission of 0.375 μg CH4 m−2 h−1. As the soil of the experimental field was well-drained and aerobic, it represented a net sink for CH4 throughout the study period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Augustin J, Merbach W, Rogasik J (1998) Factors influencing nitrous oxide and methane emissions from minerotrophic fens in northeast Germany. Biol Fertil Soils 28:1–4

    Article  CAS  Google Scholar 

  • Bodelier PLE, Laanbroek HJ (2004) Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol 47:265–277

    Article  PubMed  CAS  Google Scholar 

  • Bykova S, Boeckx P, Kravchenko I, Galchenko V, Van Cleemput O (2007) Response of CH4 oxidation and methanotrophic diversity to NH +4 and CH4 mixing ratios. Biol Fertil Soils 43:341–348

    Article  Google Scholar 

  • Castaldi S, Ermice A, Strumia S (2006) Fluxes of N2O and CH4 from soils of savannas and seasonally-dry ecosystems. J Biogeogr 33:401–415

    Article  Google Scholar 

  • Curry C (2007) Modeling the soil consumption of atmospheric methane at the global scale. Global Biogeochem Cy 21:GB4012

    Article  Google Scholar 

  • Dalal RC, Allen DE, Livesley SJ, Richards G (2008) Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes: a review. Plant Soil 309:43–76

    Article  CAS  Google Scholar 

  • Deutscher Wetterdienst (2009) http://www.dwd.de/bvbw/generator/DWDWWW/Content/Oeffentlichkeit/KU/klimaatlas/download/niederschlag/klimaatlas__dwd__rrr__2009__jahresuebersicht,templateId=raw,property=publicationFile.jpg/klimaatlas_dwd_rrr_2009_jahresuebersicht.jpg

  • Dobbie KE, Smith KA, Priemé A, Christensen S, Degorska A, Orlanski P (1996) Effect of land use on the rate of methane uptake by surface soils in northern Europe. Atmos Environ 30:1005–1011

    Article  CAS  Google Scholar 

  • Fisher RA (1932) Statistical methods for research workers, 14th edn. Oliver and Boyd, Edinburgh, 1970

    Google Scholar 

  • Flachowsky G, Brade W (2007) Reduction potentials for methane emissions from ruminants. Zuchtungskunde 79:417–465

    Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change, the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 130–234

    Google Scholar 

  • Frenzel P, Bosse U, Janssen PH (1999) Rice roots and methanogenesis in a paddy soil: ferric iron as an alternative electron acceptor in the rooted soil. Soil Biol Biochem 31:421–430

    Article  CAS  Google Scholar 

  • Grunfeld S, Brix H (1999) Methanogenesis and methane emissions: effects of water table, substrate type and presence of Phragmites australis. Aquat Bot 64:63–75

    Article  CAS  Google Scholar 

  • Hellebrand HJ, Kern J, Scholz V (2003) Long-term studies on greenhouse gas fluxes during cultivation of energy crops of sandy soils. Atmos Environ 37:1635–1644

    Article  CAS  Google Scholar 

  • Hellebrand HJ, Scholz V, Kern J, Kavdir Y (2005) N2O release during cultivation of energy crops. Agrartechnische Forschung 11(5):E114–E124

    Google Scholar 

  • Jäckel U, Schnell S, Conrad R (2001) Effect of moisture, texture and aggregate size of paddy soil on production and consumption of CH4. Soil Biol Biochem 33:965–971

    Article  Google Scholar 

  • Jambert C, Delmas R, Serca D, Thouron L, Labroue L, Delprat L (1997) N2O and CH4 emissions from fertilized agricultural soils in southwest France. Nutr Cycl Agroecosyst 48:105–114

    Article  CAS  Google Scholar 

  • Kammann C, Hepp S, Lenhart K, Mulller C (2009) Stimulation of methane consumption by endogenous CH4 production in aerobic grassland soil. Soil Biol Biochem 41:622–629

    Article  CAS  Google Scholar 

  • Kavdir Y, Hellebrand HJ, Kern J (2008) Seasonal variations of nitrous oxide emission in relation to nitrogen fertilization and energy crop types in sandy soil. Soil Till Res 98:175–186

    Article  Google Scholar 

  • Kern J, Hellebrand HJ, Scholz V, Linke B (2010) Assessment of nitrogen fertilization for the CO2 balance during the production for poplar and rye. Renew Sust Energ Rev 14:1453–1460

    Article  CAS  Google Scholar 

  • Klemedtsson AK, Klemedtsson L (1997) Methane uptake in Swedish forest soil in relation to liming and extra N-deposition. Biol Fertil Soils 25:296–301

    Article  CAS  Google Scholar 

  • Koschorreck M (2000) Methane turnover in exposed sediments of an Amazon floodplain lake. Biogeochemistry 50:195–206

    Article  CAS  Google Scholar 

  • Kotiaho M, Fritze H, Merila P, Juottonen H, Leppala M, Laine J, Laiho R, Yrjala K, Tuittila ES (2010) Methanogen activity in relation to water table level in two boreal fens. Biol Fertil Soils 46:567–575

    Article  CAS  Google Scholar 

  • Loftfield N, Flessa J, Augustin J, Beese F (1997) Automate gas chromatographic system for rapid analysis of the atmospheric trace gases methane, carbon dioxide, and nitrous oxide. J Environ Qual 26:560–564

    Article  CAS  Google Scholar 

  • Megonigal JP, Schlesinger WH (1997) Enhanced CH4 emissions from a wetland soil exposed to elevated CO2. Biogeochemistry 37:77–88

    Article  CAS  Google Scholar 

  • Mosier AR, Delgado JA, Cochran VL, Valentine DW, Parton WJ (1997) Impact of agriculture on soil consumption of atmospheric CH4 and a comparison of CH4 and N2O flux in subarctic, temperate and tropical grasslands. Nutr Cycl Agroecosys 49:71–83

    Article  CAS  Google Scholar 

  • Nykänen H, Alm J, Lang K, Silvola J, Martikainen PJ (1995) Emissions of CH4, N2O and CO2 from a virgin fen and a fen drained for grassland in Finland. J Biogeogr 22:351–357

    Article  Google Scholar 

  • Olesen JE, Bindi M (2002) Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron 16:239–262

    Article  Google Scholar 

  • Qin YM, Liu SW, Guo YQ, Liu QH, Zou JW (2010) Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China. Biol Fertil Soils 46:825–834

    Article  CAS  Google Scholar 

  • Scholz V, Ellerbrock R (2002) The growth productivity, and environmental impact of the cultivation of energy crops on sandy soil in Germany. Biomass Bioenergy 23:81–92

    Article  CAS  Google Scholar 

  • Scholz V, Hellebrand HJ, Höhn A (2004) Energetische und ökologische Aspekte der Feldholzproduktion. Bornimer Agrartechnische Berichte 55:15–32

    Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Philos T Roy Soc B 363:789–813

    Article  CAS  Google Scholar 

  • Wang YS, Xue M, Zheng XH, Ji BM, Du R, Wang YF (2005) Effects of environmental factors on N2O emission from and CH4 uptake by the typical grasslands in the Inner Mongolia. Chemosphere 58:205–215

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Kern.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kern, J., Hellebrand, H.J., Gömmel, M. et al. Effects of climatic factors and soil management on the methane flux in soils from annual and perennial energy crops. Biol Fertil Soils 48, 1–8 (2012). https://doi.org/10.1007/s00374-011-0603-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-011-0603-z

Keywords

Navigation