Skip to main content
Log in

Control of cotton Verticillium wilt and fungal diversity of rhizosphere soils by bio-organic fertilizer

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Cotton Verticillium wilt is a destructive soil-borne disease affecting cotton production. In this study, application of bio-organic fertilizer (BIO) at the beginning of nursery growth and/or at the beginning of transplanting was evaluated for its ability to control Verticillium dahliae Kleb. The most efficient control of cotton Verticillium wilt was achieved when the nursery application of BIO was combined with a second application in transplanted soil, resulting in a wilt disease incidence of only 4.4%, compared with 90.0% in the control. Denaturing gradient gel electrophoresis patterns showed that the consecutive applications of BIO at nursery and transplanting stage resulted in the presence of a unique group of fungi not found in any other treatments. Humicola sp., Metarhizium anisopliae, and Chaetomium sp., which were considered to be beneficial fungi, were found in the BIO treatment, whereas some harmful fungi, such as Alternaria alternate, Coniochaeta velutina, and Chaetothyriales sp. were detected in the control. After the consecutive applications of BIO at nursery and transplanting stage, the V. dahliae population in the rhizosphere soil in the budding period, flowering and boll-forming stage, boll-opening stage, and at harvest time were 8.5 × 102, 3.1 × 102, 4.6 × 102, and 1.7 × 102 colony-forming units per gram of soil (cfu g−1), respectively, which were significantly lower than in the control (6.1 × 103, 3.4 × 103, 5.2 × 103, and 7.0 × 103 cfu g−1, respectively). These results indicate that the suggested application mode of BIO could effectively control cotton Verticillium wilt by significantly changing the fungal community structure and reducing the V. dahliae population in the rhizosphere soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bailey KL, Lazarovits G (2003) Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Res 72:169–180

    Article  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  PubMed  CAS  Google Scholar 

  • Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biol Biochem 19:451–457

    Article  CAS  Google Scholar 

  • Bart L, Margreet B, Alfons CRC, Vanachter B, Cammue PA, Bart PH, Thomma J (2006) Real-time PCR for detection and quantification of fungal and oomycete tomato pathogens in plant and soil samples. Plant Sci 171:155–165

    Article  Google Scholar 

  • Bent E (2006) Induced systemic resistance mediated by plant growth-promoting Rhizobacteria (PGPR) and fungi (PGPF). In: Tuzun S, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer, New York, pp 225–258

    Chapter  Google Scholar 

  • Bruck DJ (2009) Impact of fungicides on Metarhizium anisopliae in the rhizosphere, bulk soil and in vitro. BioControl 54:597–606

    Article  CAS  Google Scholar 

  • Cao Y, Ling N, Yang XM, Chen LH, Shen QR (2011) Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fert Soils 47:495–506

    Article  CAS  Google Scholar 

  • Chae Gun P, Shoda M (1990) Expression of the suppressive effect of Bacillus subtilis on phytopathogens in inoculated composts. J Ferment Bioeng 70:409–414

    Article  Google Scholar 

  • Chaurasia B, Pandey A, Palni LM, Trivedi P, Kumar B, Colvin N (2005) Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol Res 160:75–81

    Article  PubMed  CAS  Google Scholar 

  • Cook RJ (1993) Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 31:53–80

    Article  PubMed  CAS  Google Scholar 

  • De Brito Alvarez MA, Gagné S, Antoun H (1995) Effect of compost on rhizosphere microflora of the tomato and on the incidence of plant growth-promoting rhizobacteria. Appl Environ Microbiol 61:194–199

    Google Scholar 

  • Earl AM, Losick R, Kolter R (2008) Ecology and genomics of Bacillus subtilis. Trends Microbiol 16:269–275

    Article  PubMed  CAS  Google Scholar 

  • Filion M, St-Arnaud M, Jabaji-Hare SH (2003) Direct quantification of fungal DNA from soil substrate using real-time PCR. Microbiol Methods 53:67–76

    Article  CAS  Google Scholar 

  • Filion M, Hamelin RC, Bernier L, St-Arnaud M (2004) Molecular profiling of rhizosphere microbial communities associated with healthy and diseased black spruce (Picea mariana) seedlings grown in a nursery. Appl Environ Microbiol 70:3541–3551

    Article  PubMed  CAS  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes, application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  PubMed  CAS  Google Scholar 

  • Goldman GH, Hayes C, Harman GE (1994) Molecular and cellular biology of biocontrol Trichoderma spp. Trends Biotech 12:478–482

    Article  CAS  Google Scholar 

  • Harwood CR, Crawshaw SG, Wipat A (2001) From genome to function: systematic analysis of the soil bacterium Bacillus subtilis. Comp Funct Geno 2:22–24

    Article  CAS  Google Scholar 

  • Heuer H, Wieland G, Schönfeld J, Schönwälder A, Gome NCM, Smalla K (2001) Bacterial community profiling using DGGE or TGGE analysis. In: Rochelle PA (ed) Environmental molecular microbiology: protocols and applications. Horizon Scientific Press, Wymondham, pp 177–190

    Google Scholar 

  • Hu P, Zhou G, Xu X, Li C, Han Y (2009) Characterization of the predominant spoilage bacteria in sliced vacuum-packed cooked ham based on 16S rDNA-DGGE. Food Contr 20:99–104

    Article  CAS  Google Scholar 

  • Hugenholtz P, Pace NR (1996) Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. Trends Biotechnol 14:190–197

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen BJ, Zidack NK, Larson BJ (2004) The role of Bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology 94:1272–1275

    Article  PubMed  CAS  Google Scholar 

  • Li HL, Yuan HX, Wang Y, Cai JX, Huang JL, Wang SZ (1998) Study on the relationship between diversity of microbes in rhizosphere and resistance of cotton cultivars to Verticillium dahliae. Plant Pathol 28:341–345

    Google Scholar 

  • Ling N, Wang QJ, Yang XM, Xu YC, Huang QW, Shen QR (2009) Control of Fusarium wilt of watermelon by nursery application of bio-organic fertilizer. Plant Nutr Fert Sci 15(5):1136–1141

    Google Scholar 

  • Ling N, Xue C, Huang QW, Yang XM, Xu YC, Shen QR (2010) Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt. Biocontrol 55:673–683

    Article  Google Scholar 

  • Luo HF, Qi H, Zhang H (2004) Assessment of the bacterial diversity in fenvalerate-treated soil. World J Microbiol Biotechnol 20:509–515

    Article  CAS  Google Scholar 

  • Luo J, Ran W, Hu J, Yang XM, Xu YC, Shen QR (2010) Application of bio-organic fertilizer significantly affected fungal diversity of soils. Soil Sci Soc of Am J 74:2039–2048

    Article  CAS  Google Scholar 

  • Manjula K, Podile AR (2005) Production of fungal cell wall degrading enzymes by a biocontrol strain of Bacillus subtilis AF 1. Indian J Exp Biol 43:892–896

    PubMed  CAS  Google Scholar 

  • Mazzola M (2007) Manipulation of rhizosphere bacterial communities to induce suppressive soils. J Nematol 39:213–220

    PubMed  Google Scholar 

  • Morrison TB, Ma Y, Weis JH, Weis JJ (1999) Rapid and sensitive quantification of Borrelia burgdorferi-infected mouse tissues by continuous fluorescent monitoring of PCR. J Clin Microbiol 37(4):987–992

    PubMed  CAS  Google Scholar 

  • Nagórska K, Bikowski M, Obuchowski M (2007) Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta biochim Pol 54:495–508

    PubMed  Google Scholar 

  • Nannipieri P, Grego S, Ceccanti B (1990) Ecological significance of the biological activity in soil. In: Bollag J-M, Stotzky G (eds) Soil biochemistry, vol 6. Marcel Dekker, New York, pp 293–355

    Google Scholar 

  • Nelson DR, Mele PM (2007) Subtle changes in rhizosphere microbial community structure in response to increased boron and sodium chloride concentrations. Soil Biol Biochem 39:340–351

    Article  CAS  Google Scholar 

  • Noble R, Coventry E (2005) Suppression of soil-borne plant diseases with composts: a review. Biocontrol Sci Technol 15:3–20

    Article  Google Scholar 

  • Ofek M, Hadar Y, Minz D (2009) Comparison of effects of compost amendment and of single-strain inoculation on root bacterial communities of young cucumber seedlings. Appl Environ Microbiol 75:6441–6450

    Article  PubMed  CAS  Google Scholar 

  • Ohno A, Ano T, Shoda M (1996) Use of soybean curd residue, okara, for the solid state substrate in the production of a lipopeptide antibiotic, iturin A, by Bacillus subtilis NB22. Process Biochem 31:801–806

    Article  CAS  Google Scholar 

  • Pegg GF, Brady BL (2002) Verticillium wilts. CAB International, Oxford

    Book  Google Scholar 

  • Postma J, Montanari M, Fvanden Boogert PHJ (2003) Microbial enrichment to enhance the disease suppressive activity of compost. Eur J Soil Biol 39:157–163

    Article  Google Scholar 

  • Pryor SW, Gibson DM, Hay AG, Gossett JM, Walker LP (2007) Optimization of spore and antifungal lipopeptide production during the solid-state fermentation of Bacillus subtilis. Appl Biochem Biotechnol 143:63–79

    Article  PubMed  CAS  Google Scholar 

  • Raviv M, Reuveni R, Zaidman BZ (1998) Improved medium for organic transplant. Biol Agric Hortic 16:53–64

    Google Scholar 

  • Romero D, Vicente AD, Olmos JL, Davila JC, Perez-Garcia A (2007) Effect of lipopeptides of antagonistic strains of Bacillus subtilis on the morphology and ultrastructure of the cucurbit fungal pathogen Podosphaera fusca. J Appl Microbiol 103:969–976

    Article  PubMed  CAS  Google Scholar 

  • Samuels GJ (2006) Trichoderma: systematics, the sexual state, and ecology. Phytopathology 96:195–206

    Article  PubMed  CAS  Google Scholar 

  • Schisler DA, Slininger PJ, Behle RW, Jackson MA (2004) Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267–1271

    Article  PubMed  CAS  Google Scholar 

  • Schnerr H, Niessen L, Vogel RF (2001) Real-time detection of the Tri5 gene in Fusarium species by LightCycler PCR using SYBR Green I for continuous fluorescence monitoring. Int J Food Microbiol 71:53–61

    Article  PubMed  CAS  Google Scholar 

  • Schroeder KL, Okubara PA, Tambong JT, Levesque CA, Paulitz TC (2006) Identification and quantification of pathogenic Pythium spp. from soils in eastern Washington using real-time polymerase chain reaction. Phytopathology 96:637–647

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui ZA (2006) PGPR: prospective biocontrol agents of plant pathogens. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 111–142

    Chapter  Google Scholar 

  • Spurrier EC (1990) Pesticides—there will be change. Plant disease 74:103–110

    Article  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857

    Article  PubMed  CAS  Google Scholar 

  • Suárez-Estrella F, Vargas-García C, López MJ, Capel C, Moreno J (2007) Antagonistic activity of bacteria and fungi from horticultural compost against Fusarium oxysporum f. sp. melonis. Crop Prot 26:46–53

    Article  Google Scholar 

  • Suyanto OT, Yazaki S, Mimura Ui AS (2003) Isolation of a novel thermophilic fungus Chaetomium sp. nov. MS-017 and description of its palm-oil mill fiber-decomposing properties. Appl Microbiol Biotechnol 60:581–587

    PubMed  CAS  Google Scholar 

  • Tang JC, Wei JH, Maeda K, Kawai H, Zhou Q, Hosoi-Tanabe S, Nagata S (2007) Degradation of the seaweed wakame (Undaria pinnatifida) by a composting process with the inoculation of Bacillus sp. HR6. Biocontrol Sci 12:47–54

    PubMed  CAS  Google Scholar 

  • Termorshuizen AJ, Evan R, Jvan der Gaag D, Alabouvette C, Chen Y, Lagerlöf J, Malandrakis AA, Paplomatas EJ, Rämert B, Ryckeboer J, Steinberg C, Zmora-Nahum S (2006) Suppressiveness of 18 composts against 7 pathosystems: variability in pathogen response. Soil Biol Biochem 38:2461–2477

    Article  CAS  Google Scholar 

  • Tjamos EC (1989) Problems and prospects in controlling Verticillium wilt. In: Tjamos EC, Beckman C (eds) Vascular wilt diseases of plants. Springer, Berlin, pp 441–478

    Google Scholar 

  • Tjamos EC, Tsitsiyannis DI, Tjamos SE (2000) Selection and evaluation of rhizosphere bacteria as biocontrol agents against Verticillium dahliae. In: Tjamos EC, Rowe RC, Heale JB, Fravel DR (eds) Advances in Verticillium research and disease management. American Phytopathological Society (APS) Press, St. Paul, pp 244–248

    Google Scholar 

  • Vainio EJ, Hantula H (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104:927–936

    Article  CAS  Google Scholar 

  • Wei Z, Yang XM, Yin SX, Shen QR, Ran W, Xu YC (2011) Efficacy of Bacillus-fortified organic ferti liser in controlling bacterial wilt of tomato in the field. Appl Soil Ecol 48:152–159

    Article  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathol 97:250–256

    Article  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    PubMed  CAS  Google Scholar 

  • Wittwer CT, Ririe KM, Andrew RV, David DA, Gundry RA, Balis UJ (1997) The LightCyclerk: a microvolume multisample fluorimeter with rapid temperature control. Biotech 22:176–181

    CAS  Google Scholar 

  • Yang XM, Chen LH, Yong XY, Shen QR (2011) Formulations can affect colonization and biocontrol efficiency of Trichoderma harzianum SQR-T037 against Fusarium wilt of cucumbers. Biol Fert Soils 47:239–248

    Article  Google Scholar 

  • Zhang H, Yang XM, Ran W, Xu YC, Shen QR (2008a) Screening of bacterial antagonists against soil-borne cotton Verticillium wilt and their biological effects on the soil-cotton system. Acta Pedol Sin 45:1095–1101

    CAS  Google Scholar 

  • Zhang S, Raza W, Yang XM, Hu J, Huang QW, Xu YC, Liu X, Ran W, Shen QR (2008b) Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biol Fertil Soils 44:1073–1080

    Article  Google Scholar 

  • Zhang N, Wu K, He X, Li SQ, Zhang ZH, Shen B, Yang XM, Zhang RF, Huang QW, Shen QR (2011) A new bioorganic fertilizer can effectively control banana wilt by strong colonization of Bacillus subtilis N11. Plant Soil 344:87–97

    Article  CAS  Google Scholar 

  • Zhao S, Luo J, Ling N, Xu DB, Lang JJ, Hu J, Shen QR (2010) Quick check and quantification of Fusarium oxysporum in soil with macroarray and real-time PCR method. Acta Pedol Sin 47:703–708

    CAS  Google Scholar 

  • Zhao QY, Dong CX, Yang XM, Mei XL, Ran W, Shen QR, Xu YC (2011) Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer. Appl Soil Ecol 47:67–75

    Article  Google Scholar 

  • Zhu L, Zhang X, Tu L, Zeng F, Nie Y, Guo X (2007) Isolation and characterization of two novel dirigent-like genes highly induced in cotton (Gossypium barbadense and G. hirsutum) after infection by Verticillium dahliae. Plant Pathol 89:41–45

    CAS  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the Chinese Ministry of Science and Technology (2011CB100503) and by the Agricultural Ministry of China (201103004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qirong Shen.

Additional information

Authors Jiaojiao Lang and Jiang Hu equally contributed to the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, J., Hu, J., Ran, W. et al. Control of cotton Verticillium wilt and fungal diversity of rhizosphere soils by bio-organic fertilizer. Biol Fertil Soils 48, 191–203 (2012). https://doi.org/10.1007/s00374-011-0617-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-011-0617-6

Keywords

Navigation