Skip to main content

Advertisement

Log in

Soil solid phases effects on the proteomic analysis of Cupriavidus metallidurans CH34

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Cupriavidus metallidurans CH34 is a completely sequenced soil-borne beta-proteobacterium with known genome and proteome. Comparative 2-D electrophoresis and protein mass spectrometry were used to compare the proteome of C. metallidurans CH34 from liquid culture and after incubation for 1, 3, and 12 days in microcosms containing quartz sand, kaolinite, montmorillonite, or an artificial soil. Results showed that proteome from liquid culture was similar to CH34 proteins extracted from sand and kaolinite, whereas the proteins extracted from artificial soil differed significantly and no proteins were detected from C. metallidurans CH34 incubated in the montmorillonite microcosms. Protein recovery decreased on prolonging incubation time in all microcosms. Mass spectrometry identification showed that the trend of lower recovery upon incubation time was independent on the putative function of protein. These results suggest that the soil solid phase influences the protein recovery and soil proteomic analysis and that distinction between protein recovery and protein expression in soil will be a challenging for soil proteomic researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Avena MJ, Wilkinson KJ (2002) Disaggregation kinetics of a peat humic acid: mechanism and pH effects. Environ Sci Technol 36:5100–5105

    Article  PubMed  CAS  Google Scholar 

  • Baron MH, Revault M, Servargent-Noinville S, Abadie J, Quiquampoix H (1999) Chymotrypsin adsorption on montmorillonite: enzymatic activity and kinetic FTIR structural analysis. J Colloid Interf Sci 214:319–332

    Article  CAS  Google Scholar 

  • Benndorf D, Vogt C, Jehmlich N, Schmidt Y, Thomas H, Woffendin G et al (2009) Improving protein extraction and separation methods for investigating the metaproteome of anaerobic benzene communities within sediments. Biodegradation 20:737–750

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Ceccanti B, Nannipieri P, Cervelli S, Sequi P (1978) Fraction of humus–urease complexes. Soil Biol Biochem 10:39–45

    Article  CAS  Google Scholar 

  • Chen S, Rillig MC, Wang W (2009) Improving soil protein extraction for metaproteome analysis and glomalin-related soil protein detection. Proteomics 21:4970–3

    Article  Google Scholar 

  • Chourey K, Jansson J, Ver Berkmoes N, Shah M, Chavarria KL, Tom LM et al (2010) Direct cellular lysis/protein extraction protocol for soil metaproteomics. J Proteome Res 9:6615–6622

    Article  PubMed  CAS  Google Scholar 

  • Craig OE, Collins MJ (2000) An improved method for the immunological detection of mineral bound protein using hydrofluoric acid and direct capture. J Immunol Methods 236:89–97

    Article  PubMed  CAS  Google Scholar 

  • Grimes DJ, Atwell RW, Brayton PR, Palmer LM, Rollins DM, Roszak DB et al (1986) The fate of enteric pathogenic bacteria in estuarine and marine environments. Microbiol Sci 3:324–9

    PubMed  CAS  Google Scholar 

  • Haynes CA, Norde W (1994) Globular proteins at solid/liquid interfaces. Colloids Surfaces 2:517–566

    Article  CAS  Google Scholar 

  • Helassa N, Quiquampoix H, Noinville S, Szponarski W, Staunton S (2009) Adsorption and desorption of monomeric Bt (Bacillus thuringiensis) Cry1Aa toxin on montmorillonite and kaolinite. Soil Biol Biol 41:498–504

    Article  CAS  Google Scholar 

  • Janssen PJ, van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A et al (2010) The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. Plos One 5:e10433

    Article  PubMed  Google Scholar 

  • Keller M, Hettich R (2009) Environmental proteomics: a paradigm shift in characterizing microbial activities at the molecular level. Microbiol Mol Biol R 73:62–70

    Article  CAS  Google Scholar 

  • Kleber M, Sollins P, Sutton RA (2007) A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 85:9–24

    Article  Google Scholar 

  • Lorch HJ, Benckieser G, Ottow JCG (1995) Basic methods for counting microorganisms in soil and water. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic, San Diego, pp 146–147

    Google Scholar 

  • Luo Y, Vilain S, Voigt B, Albrecht D, Hecker M, Brozel VS (2007) Proteomic analysis of Bacillus cereus growing in liquid soil organic matter. FEMS Microbiol Lett 271:40–47

    Article  PubMed  CAS  Google Scholar 

  • Maron PA, Maitre M, Mercier A, Lejon DPH, Nowak V, Ranjard L (2008) Protein and DNA fingerprinting of a soil bacterial community inoculated into three different sterile soils. Res Microbiol 159:231–236

    Article  PubMed  CAS  Google Scholar 

  • Masciandaro G, Macci C, Doni S, Maserti BE, Calvo-Bado Leo A, Ceccanti B et al (2008) Comparison of extraction methods for recovery of extracellular β-glucosidase in two different forest soils. Soil Biol Biochem 40:2156–2161

    Article  CAS  Google Scholar 

  • Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334

    PubMed  CAS  Google Scholar 

  • Nannipieri P (2006) Role of stabilized enzymes in microbial ecology and enzyme extraction from soil with potential applications in soil proteomics. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil: soil biology. Springer, Heidelberg, pp 75–94

    Chapter  Google Scholar 

  • Nannipieri P, Paul E (2009) The chemical and functional characterization of soil N and its biotic components. Soil Biol Biochem 41:2357–2369

    Article  CAS  Google Scholar 

  • Nannipieri P, Sequi P, Fusi P (1996) Humus and enzyme activity. In: Piccolo A (ed) Humus substances in terrestrial ecosystems. Elsevier, Amsterdam, pp 293–328

    Chapter  Google Scholar 

  • Nannipieri P, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Measurement of intracellular enzyme activity in soil. In: Lobo MC, Ibanez JJ (eds) Preserving soil quality and soil biodiversity. IMIA, Madrid, pp 141–150

    Google Scholar 

  • Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262

    Article  PubMed  CAS  Google Scholar 

  • Nielsen KM, Calamai L, Pietramellara G (2006) Stabilization of extracellular DNA by transient binding to various soil surfaces. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil, vol. 8: soil biology. Springer, Heidelberg, pp 141–157

    Chapter  Google Scholar 

  • Noël-Georis I, Vallaeys T, Chauvaux R, Monchy S, Falmagne P, Mergeay M et al (2004) Global analysis of the Ralstonia metallidurans proteome: prelude for the large-scale study of heavy metal response. Proteomics 4:151–179

    Article  PubMed  Google Scholar 

  • Nyström T (2003) Nonculturable bacteria: programmed survival forms or cells at death’s door? Bioessays 25:204–11

    Article  PubMed  Google Scholar 

  • Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166:810–833

    Article  CAS  Google Scholar 

  • Quiquampoix H (2008) Enzymes and proteins, interactions with soil constituent surfaces. In: Chesworth W (ed) Encyclopedia of soil science. Springer, Berlin, pp 210–216

    Chapter  Google Scholar 

  • Quiquampoix H, Burns RG (2007) Interactions between proteins and soil mineral surfaces: environmental and health consequences. Elements 3:401–406

    Article  CAS  Google Scholar 

  • Rigou P, Rezaei H, Grosclaude J, Staunton S, Quiquampoix H (2006) Fate of prions in soil: adsorption and extraction by electroelution of recombinant bovine prion protein from montmorillonite and natural soils. Environ Sci Technol 40:1497–1503

    Article  PubMed  CAS  Google Scholar 

  • Rillig MC, Caldwell BA, Wosten HAB, Sollins P (2007) Role of proteins in soil carbon and nitrogen storage: controls on persistance. Biogechemistry 85:25–44

    Article  CAS  Google Scholar 

  • Schindler FV, Mercer EJ, Rice JA (2007) Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content. Soil Biol Biochem 39:320–329

    Article  CAS  Google Scholar 

  • Schulze WX, Gleixner G, Kaiser K, Guggenberger G, Mann M, Schulze ED (2005) A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia 142:335–343

    Article  PubMed  Google Scholar 

  • Servargent-Noinville S, Revault M, Quiquampoix H, Baron MH (2000) Conformational changes of bovine serum albumin induced by adsorption on different clay surfaces: FTIR analysis. J Colloid Interf Sci 221:273–283

    Article  Google Scholar 

  • Singleton I, Merrington G, Colvan S, Delahunthy JS (2003) The potential of soil protein-based methods to indicate metal contamination. Appl Soil Ecol 23:25–32

    Article  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry, genesis, composition and reactions. Wiley, New York

    Google Scholar 

  • Swaby RJ, Ladd JN (1962) Chemical nature, microbial resistance and origin of soil humus. Trans Int Soc Soil Sci Comm IV(V):197, New Zealand 1962

    Google Scholar 

  • Tan WF, Koopal LK, Norde W (2009) Interaction between humic acid and lysozyme, studied by dynamic light scattering and isothermal titration calorimetry. Environ Sci Technol 43:591–6

    Article  PubMed  CAS  Google Scholar 

  • Taylor EB, Williams MA (2009) Microbial protein in soil: influence of extraction method and C amendment on extraction and recovery. Microb Ecol 59:390–399

    Article  PubMed  Google Scholar 

  • Tholozan JL, Cappelier JM, Tissier JP, Delattre G, Federighi M (1999) Physiological characterization of viable-but-nonculturable Campylobacter jejuni cells. Appl Environ Microbiol 65:1110–6

    PubMed  CAS  Google Scholar 

  • Wang HB, Zhang ZX, Li H, He HB, Fang CX, Zhang AJ et al (2011) Characterization of metaproteomics in crop rhizospheric soil. J Proteome Res 10:932–940

    Article  PubMed  CAS  Google Scholar 

  • Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–3

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The Department of Plant, Soil and Environmental Sciences thank the Ente Cassa di Risparmio di Firenze for the financial support (project title—Approccio proteomico per una migliore comprensione della funzionalità del suolo e delle interazioni suolo-pianta; file n° 2009.0401) for the aquisition of new instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Giagnoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giagnoni, L., Magherini, F., Landi, L. et al. Soil solid phases effects on the proteomic analysis of Cupriavidus metallidurans CH34. Biol Fertil Soils 48, 425–433 (2012). https://doi.org/10.1007/s00374-011-0641-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-011-0641-6

Keywords

Navigation