Skip to main content
Log in

Maize lines with different nitrogen use efficiency select bacterial communities with different β-glucosidase-encoding genes and glucosidase activity in the rhizosphere

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

We studied the molecular diversity of β-glucosidase-encoding genes, microbial biomass, cellulase, N-acetyl-glucosaminidase, β-glucosidase, and β-galactosidase activities in the rhizosphere and bulk soil of two maize lines differing in nitrogen use efficiency (NUE). The maize lines had significant differences in diversity of β-glucosidase-encoding genes in their rhizosphere, and Actinobacteria and Proteobacteria were the dominating phyla in all samples, but representatives of Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Firmicutes, and Cyanobacteria were also detected. Among the Proteobacteria, β-glucosidase genes from α-, β-, and γ-Proteobacteria were dominant in the rhizosphere of the high NUE maize line, whereas δ-Proteobacteria β-glucosidase genes were dominant in the rhizosphere of the low NUE maize line. The high NUE maize line also showed higher glucosidase activities in the rhizosphere than the low NUE maize line. We concluded that plants with high NUE select bacterial communities in the rhizosphere differing in the diversity of β-glucosidase-encoding genes which likely result in higher C-hydrolyzing enzyme activities. These effects on the diversity of β-glucosidase-encoding genes may influence the C dynamics in the agro-ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ascher J, Ceccherini MT, Pantani OL, Agnelli A, Borgogni F, Guerri G, Nannipieri P, Pietramellara G (2009) Sequential extraction and fingerprinting of soil metagenome. Appl Soil Ecol 42:176–181

    Article  Google Scholar 

  • Badalucco L, Nannipieri P (2007) Nutrient transformations in the rhizosphere. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil–plant interface, 2nd edn. CRC Press, Boca Raton, pp 111–133

    Chapter  Google Scholar 

  • Bais HP, Broeckling CD, Vivanco JM (2008) Root exudates modulate plant-microbe interaction in the rhizosphere. In: Karlovsky P (ed) Secondary metabolites in soil ecology, soil biology 14. Springer, Berlin, pp 241–252

    Chapter  Google Scholar 

  • Baldrian P, Kolarık, Stursova M, Kopecky J, Valaskova V, Vetrovsky T, Zifcakova L, Snajdr J, Rıdl J, Vlcek C, Vorıskova J (2012) Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J 6:248–258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bandick AK, Dick R (1999) Field management effects on soil enzyme activities. Soil Biol Biochem 31:1471–1479

    Article  CAS  Google Scholar 

  • Barriuso J, Marín S, Mellado RP (2010) Effect of the herbicide glyphosate on glyphosate-tolerant maize rhizobacterial communities: a comparison with pre-emergency applied herbicide consisting of a combination of acetochlor and terbuthylazine. Environ Microbiol 12:1021–1030

    Article  CAS  PubMed  Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 35:1183–1192

    Article  CAS  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  PubMed  Google Scholar 

  • Bowen GD, Rovira A (1991) The rhizosphere. In: Walsel Y, Eshel A, Kafkafi U (eds) Plants root, the hidden half. Marcel Dekker, New York, pp 641–669

    Google Scholar 

  • Cakmacki R, Kantar F, Algur OF (1999) Sugar beet and barley yields in relation to Bacillus polymyxa and Bacillus megaterium var. phosphaticum inoculation. J Plant Nutr Soil Sci 162:437–442

    Article  Google Scholar 

  • Cañizares R, Benitez E, Ogunseitan OA (2011) Molecular analyses of beta-glucosidase diversity and function in soil. Eur J Soil Biol 47:1–8

    Article  Google Scholar 

  • Cañizares R, Moreno B, Benitez E (2012a) Biochemical characterization with detection and expression of bacterial β-glucosidase encoding genes of a Mediterranean soil under different long term management practices. Biol Fertil Soils 48:651–663

    Article  Google Scholar 

  • Cañizares R, Moreno B, Benitez E (2012b) Bacterial β-glucosidase function and metabolic activity depend on soil management in semiarid rainfed agriculture. Ecol Evol 2:727–731

    Article  PubMed Central  PubMed  Google Scholar 

  • Chauhan PS, Chaudhry V, Mishra S, Nautiyal CS (2011) Uncultured bacterial diversity in tropical maize (Zea mays L.) rhizosphere. J Basic Microbiol 51:15–32

    Article  CAS  PubMed  Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263

    Article  CAS  PubMed  Google Scholar 

  • Ciardi C, Nannipieri P (1990) A comparison of methods for measuring ATP in soil. Soil Biol Biochem 22:725–727

    Article  CAS  Google Scholar 

  • Coleman DC, Odum EP, Crossley DA (1992) Soil biology, soil ecology and global change. Biol Fertil Soils 14:104–111

    Article  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL: http://www.R-project.org

  • Duangmal K, Mingma R, Pathom-aree W, Thamchaipenet A, Inahashi Y, Matsumoto A, Takahashi Y (2011) Amycolatopsis samaneae sp. nov., isolated from roots of Samanea saman (Jacq.) Merr. Int J Syst Evol Microbiol 61:951–955

    Article  CAS  PubMed  Google Scholar 

  • Faure D, Henrissat B, Ptacek D, Bekri MA, Vanderleyden J (2001) The celA gene, encoding a glycosyl hydrolase family 3 β-glucosidase in Azospirillum irakense, is required for optimal growth on cellobiosides. Appl Environ Microbiol 67:2380–2383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gonzalez-Franco AC, Deobald LA, Spivak A, Crawford DL (2003) Actinobacterial chitinase-like enzymes: profiles of rhizosphere versus non-rhizosphere isolates. Can J Microbiol 49:683–698

    Article  CAS  PubMed  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistic software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Helal HM, Sauerbeck D (1989) Carbon turnover in the rhizosphere. Z Pflanzenernaehr Bodenkd 152:211–216

    Article  CAS  Google Scholar 

  • Hongrittipun P, Youpensuk S, Rerkasem B (2014) Screening of nitrogen fixing endophytic bacteria in Oryza sativa L. J Agric Sci 6:66–74

    Google Scholar 

  • Knight TR, Dick RP (2004) Differentiating microbial and stabilized β-glucosidase activity relative to soil quality. Soil Biol Biochem 36:2089–2096

    Article  CAS  Google Scholar 

  • Konstantinidis KT, Ramette A, Tiedje JM (2006) Toward a more robust assessment of intraspecies diversity, using fewer genetic markers. Appl Environ Microbiol 72:7286–7293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Landi L, Valori F, Ascher J, Renella G, Falchini L, Nannipieri P (2006) Root exudate effects on the bacterial communities CO2 evolution nitrogen transformations and ATP content of rhizosphere and bulk soils. Soil Biol Biochem 38:509–516

    Article  CAS  Google Scholar 

  • Li X, Rui J, Xiong J, Li J, He Z, Zhou J, Yannarell AC, Mackie RI (2014) Functional potential of soil microbial communities in the maize rhizosphere. PLoS ONE 9, e112609

    Article  PubMed Central  PubMed  Google Scholar 

  • Lugtenberg BJJ, Bloemberg GV (2004) Life in the rhizosphere. In: Ramos JL (ed) Pseudomonas. Kluwer Academic/Plenum Publishers, New York, pp 403–430

    Chapter  Google Scholar 

  • Metcalfe AC, Krsek M, Gooday GW, Prosser JI, Wellington EMH (2002) Molecular analysis of a bacterial chitinolytic community in an upland pasture. Appl Environ Microbiol 68:5042–5050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Fornasier F, Moscatelli MC, Marinari S (2012) Soil enzymology: classical and molecular approaches. Biol Fertil Soils 48:743–762

    Article  Google Scholar 

  • Pathan SI, Ceccherini MT, Pietramellara G, Puschenreiter M, Giagnoni L, Arenella M, Varanini Z, Nannpieri P, Renella G (2015) Enzyme activity and microbial community structure in the rhizosphere of two maize lines differing in N use efficiency. Plant Soil 387:413–424

    Article  CAS  Google Scholar 

  • Pikuta E, Lysenko A, Chuvilskaya N, Mendrock U, Hippe H, Suzina N, Nikitin D, Osipov G, Laurinavichius K (2000) Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavithermus comb. nov. Int J Syst Evol Microbiol 50:2109–2117

    Article  CAS  PubMed  Google Scholar 

  • Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raup DM, Crick RE (1979) Measurement of faunal similarity in paleontology. J Paleontol 53:1213–1227

    Google Scholar 

  • Renella G, Landi L, Valori F, Nannipieri P (2007) Microbial and hydrolase activity after release of low molecular weight organic compounds by a model root surface in a clay and a sandy soil. Appl Soil Ecol 36:124–129

    Article  Google Scholar 

  • Sasaki C, Yokoyama A, Itoh Y, Hashimoto M, Watanabe T, Fukamizo T (2002) Comparative study of the reaction mechanism of family 18 chitinases from plants and microbes. J Biochem 13:557–564

    Article  Google Scholar 

  • Schmidt MI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DA, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  CAS  PubMed  Google Scholar 

  • Shannon CE, Weaver W (1948) A mathematical theory of communication. Bell Syst Tech J 27379–27423

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  • Sørensen T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. K Dan Vidensk Selsk Biol Skr 5:1–34

    Google Scholar 

  • Tabatabai MA, Soil enzymes (1982) In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2, chemical and microbiological properties, 2nd edn. American Society of Agronomy/Soil Science Society of America, Madison, pp 903–947

    Google Scholar 

  • Ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power Ithaca. Available at http://www.canoco.com

  • Thanh DTN, Diep CN (2014) Isolation, characterization and identification of endophytic bacteria in maize (Zea mays L.) cultivated on Acrisols of the Southeast of Vietnam. Am J Life Sci 2:224–233

    Article  CAS  Google Scholar 

  • Uroz S, Buée M, Murat C, Frey-Klett P, Martin F (2010) Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol Rep 2:281–288

    Article  CAS  PubMed  Google Scholar 

  • World Reference Base for Soil Resources (2006) A framework for international classification, correlation and communication. World soil resources reports no. 103. FAO, Rome, 116 pp

    Google Scholar 

  • Xu XW, Huo YY, Wang CS, Oren A, Cui HL, Vedler E, Wu M (2011) Pelagibacterium halotolerans gen. nov., sp nov and Pelagibacterium luteolum sp nov., novel members of the family Hyphomicrobiaceae. Int J Syst Evol Microbiol 61:1817–1822

    Article  CAS  PubMed  Google Scholar 

  • Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministry for Education and Research project “PRIN 2009MWY5F9.” Shamina I. Pathan was supported by the Marie Curie ITN action “TRAINBIODIVERSE,” grant no. 289949. The Department of Agrifood Production and Environmental Sciences thanks the Ente Cassa di Risparmio di Firenze for the financial support for the acquisition of new instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Renella.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

(DOC 66 kb)

Supplementary Figure 2

(DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathan, S.I., Ceccherini, M.T., Hansen, M.A. et al. Maize lines with different nitrogen use efficiency select bacterial communities with different β-glucosidase-encoding genes and glucosidase activity in the rhizosphere. Biol Fertil Soils 51, 995–1004 (2015). https://doi.org/10.1007/s00374-015-1045-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-015-1045-9

Keywords

Navigation