Skip to main content
Log in

The molecular characteristics of compost affect plant growth, arbuscular mycorrhizal fungi, and soil microbial community composition

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Compost amendment to agricultural soils influences plant growth and soil quality by affecting activity of arbuscular mycorrhizal fungi (AMF) and composition of microbial community. We related the molecular composition of compost of different maturity added to soils to their effects on maize growth, N and P uptake, AMF root colonization and growth, and composition of soil microbial community. The characteristics of compost after different days of maturation (C60, C90, C120) were provided by 13C-solid state NMR spectroscopy, while neutral (NLFA) and phospholipid (PLFA) fatty acid analyses were used to evaluate the effects of compost on the composition of soil microbial communities. Multivariate elaboration was used to determine the relationships between microbial groups, as identified by PLFA analysis, and molecular properties of composts. Although compost amendments increased soil total C and N, and available P, soil addition of both C60 and C120 compost samples was detrimental to plant and AMF growth. Compost amendments modified the composition of soil microbial communities. The high content of biolabile compounds in C60 and C120 compost samples decreased the C16:1ω5 NLFA that was related to AMF and Gram(+)/Gram(−) and AMF/saprotrophic fungi ratios. A linear correlation was found between the molecular indexes in compost and the microbial groups in soil, thereby suggesting that the molecular composition of compost strictly controls the development and abundance of soil microbial communities. These findings highlight the importance of controlling the molecular quality of recycled biomass added to soil, in order to predict the effect on crop yields and biotic composition of soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aleklett K, Wallander H (2012) Effects of organic amendments with various nitrogen levels on arbuscular mycorrhizal fungal growth. Appl Soil Ecol 60:71–76

    Article  Google Scholar 

  • Alguacil M, Díaz-Pereira E, Caravaca F, Fernández DA, Roldán A (2009) Increased diversity of arbuscular mycorrhizal fungi in a long-term field experiment via application of organic amendments to a semiarid degraded soil. Appl Environ Microbiol 75:4254–4263

    Article  CAS  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  PubMed  CAS  Google Scholar 

  • Atalla RH, VanderHart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15:1–19

    Article  PubMed  CAS  Google Scholar 

  • Baath E (2003) The use of neutral lipid fatty acids to indicate the physiological conditions of the soil fungi. Microbial Ecol 45:373–383

    Article  CAS  Google Scholar 

  • Bardgett RD, Hobbs P, Frostegard A (1996) Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol Fertil Soils 22:261–264

    Article  Google Scholar 

  • Bardgett RD, Richter A, Bol R, Garnett MH, Baumler R, Xu X, Lopez-Capel E, Manning DAC, Hobbs PJ, Hartley IR, Wanek W (2007) Heterotrophic microbial communities use ancient carbon following glacial retreat. Biol Lett 3:487–490

    Article  PubMed  PubMed Central  Google Scholar 

  • Bastida F, Kandeler E, Moreno JL, Ros M, García C, Hernández T (2008) Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate. Appl Soil Ecol 40:318–329

    Article  Google Scholar 

  • Baumann K, Marschner P, Kuhn TK, Smernik RJ, Baldock JA (2011) Microbial community structure and residue chemistry during decomposition of shoots and roots of young and mature wheat (Triticum aestivum L.) in sand. Eur J Soil Sci 62:666–675

    Article  CAS  Google Scholar 

  • Bending GD, Turner MK, Rayns F, Marx MC, Wood M (2004) Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biol Biochem 36:1785–1792

    Article  CAS  Google Scholar 

  • Berg B, McClaugherty C (2003) Plant litter, decomposition, humus formation, carbon sequestration. Springer, Berlin

    Google Scholar 

  • Biasi C, Rusalimova O, Meyer H, Kaiser C, Wanek W, Barsukov P, Junger H, Richter A (2005) Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs. Rapid Commun Mass Spectrom 19:1401–1408

    Article  PubMed  CAS  Google Scholar 

  • Blagodatskaya EV, Blagodatsky SA, Anderson TH, Kuzyakov Y (2009) Contrasting effects of glucose, living roots and maize straw on microbial growth kinetics and substrate availability in soil. Eur J Soil Sci 60:186–197

    Article  CAS  Google Scholar 

  • Blanke V, Wagner M, Renke C, Lippert H, Michulitz M, Kuhn AJ, Buscot F (2011) Arbuscular mycorrhizas in phosphate-polluted soil: interrelations between root colonization and nitrogen. Plant Soil 343:379–392

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  • Börjesson G, Menichetti L, Kirchmann H, Kätterer T (2012) Soil microbial community structure affected by 53 years of nitrogen fertilisation and different organic amendments. Biol Fertil Soils 48:245–257

    Article  CAS  Google Scholar 

  • Bremner JM, Mulvaney CS (1982) Nitrogen total. In: Page AL., Miller RH, Keeney DR. (Eds.), Methods of Soil Analysis, Part 2. Am Soc Agron Madison 371–378

  • Busby RR, Torberth HA, Gebhart DL (2007) Carbon and nitrogen mineralization of non-composted and composted municipal solid waste in sandy soils. Soil Biol Biochem 39:1277–1283

    Article  CAS  Google Scholar 

  • Cala V, Cases MA, Walter I (2006) Biomass production and heavy metal content of Rosmarinus officinalis grown on organic waste-amended soil. J Arid Environ 62:401–412

    Article  Google Scholar 

  • Campitelli P, Ceppi S (2008) Effects of composting technologies on the chemicals and physicochemical properties of humic acids. Geoderma 144:325–333

    Article  CAS  Google Scholar 

  • Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365

    Article  Google Scholar 

  • Cavagnaro TR (2014) Impacts of compost application on the formation and functioning of arbuscular mycorrhizas. Soil Biol Biochem 78:38–44

    Article  CAS  Google Scholar 

  • Chaoui HI, Zibilske LM, Ohno T (2003) Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biol Biochem 35:295–302

    Article  CAS  Google Scholar 

  • Courtney RG, Mullen GJ (2008) Soil quality and barley growth as influenced by the land application of two compost types. Bioresour Technol 99:2913–2918

    Article  PubMed  CAS  Google Scholar 

  • Cozzolino V, Di Meo V, Piccolo A (2013) Impact of arbuscular mycorrhizal fungi applications on maize production and soil phosphorus availability. J Geochem Explor 129:40–44

    Article  CAS  Google Scholar 

  • Drigo B, Pijl AS, Duyts H, Kielak AM, Gamper HA, Houtekamer MJ, Boschker HTS, Bodelier PLE, Whiteley AS, Veen JAV, Kowalchuk GA (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci U S A 107:10938–10942

    Article  PubMed  PubMed Central  Google Scholar 

  • Duong TT, Penfold C, Marschner P (2012) Amending soils of different texture with six compost types: impact on soil nutrient availability, plant growth and nutrient uptake. Plant Soil 354:197–209

    Article  CAS  Google Scholar 

  • Feng X, Simpson AJ, Schlesinger WH, Simpson MJ (2010) Altered microbial community structure and organic matter composition under elevated CO2 and N fertilization in the Duke forest. Glob Chang Biol 16:2104–2116

    Article  Google Scholar 

  • Fernández DA, Roldán A, Azcón R, Caravaca F, Bååth E (2012) Effects of water stress, organic amendment and mycorrhizal inoculation on soil microbial community structure and activity during the establishment of two heavy metal-tolerant native plant species. Microb Ecol 63:794–803

    Article  PubMed  CAS  Google Scholar 

  • Flavel TC, Murphy DV (2006) Carbon and nitrogen mineralization rates after application of organic amendments to soil. J Environ Qual 35:183–193

    Article  PubMed  CAS  Google Scholar 

  • Frostegard A, Baath E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65

    Article  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques to measure VA infection in roots. New Phytol 84:167–174

    Article  Google Scholar 

  • Gryndler M, Vosátka M, Hršelová H, Chvátalová I, Jansa J (2002) Interaction between arbuscular mycorrhizal fungi and cellulose in growth substrate. Appl Soil Ecol 19:279–288

    Article  Google Scholar 

  • Gryndler M, Hršelová H, Cajthaml T, Havránková M, Řezáčová V, Gryndlerová H, Larsen J (2009) Influence of soil organic matter decomposition on arbuscular mycorrhizal fungi in terms of asymbiotic hyphal growth and root colonization. Mycorrhiza 19:255–266

    Article  PubMed  Google Scholar 

  • Hammer EC, Nasr H, Wallander H (2011) Effects of different organic materials and mineral nutrients on arbuscular mycorrhizal fungal growth in a Mediterranean saline dryland. Soil Biol Biochem 43:2332–2337

    Article  CAS  Google Scholar 

  • Hargreaves JC, Adl MS, Warman PR (2008) A review of the use of composted municipal solid waste in agriculture. Agric Ecosyst Environ 123:1–14

    Article  Google Scholar 

  • Hazzoumi Z, Moustakime Y, E-h E, Joutei KA (2015) Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum L). Chem Biol Technol Agric 2:10

    Article  Google Scholar 

  • Hedlund K (2002) Soil microbial community structure in relation to plant diversity management on former agricultural land. Soil Biol Biochem 34:1299–1307

    Article  CAS  Google Scholar 

  • Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci U S A 107:13754–13759

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson D, Vandenkoornhuyse PJ, Leake JR, Gilbert L, Booth RE, Grime PJ, Young JPW, Read D (2003) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515

    Article  Google Scholar 

  • Keeler BL, Hobbie SE, Kellogg LE (2009) Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition. Ecosystems 12:1–15

    Article  CAS  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E et al (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  PubMed  CAS  Google Scholar 

  • Koranda M, Kaiser C, Fuchslueger L, Kitzler B, Sessitsch A, Zechmeister-Boltenstern S, Richter A (2014) Fungal and bacterial utilization of organic substrates depends on substrate complexity and N availability. FEMS Microbiol Ecol 87:142–152

    Article  PubMed  CAS  Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Haggblom M (2003) Experimental ¨analysis of the effect of exotic and native plant species on the structures and function of soil microbial communities. Soil Biol Biochem 35:895–905

    Article  CAS  Google Scholar 

  • Kowaljow E, Mazzarino MJ (2007) Soil restoration in semiarid Patagonia: chemical and biological response to different compost quality. Soil Biol Biochem 39:1580–1588

    Article  CAS  Google Scholar 

  • Kramer C, Gleixner G (2006) Variable use of plant- and soil-derived carbon by microorganisms in agricultural soils. Soil Biol Biochem 38:3267–3278

    Article  CAS  Google Scholar 

  • Lazcano C, Gómez-Brandón M, Revilla P, Domínguez J (2013) Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biol Fertil Soils 49:723–733

    Article  CAS  Google Scholar 

  • Leigh J, Fitter AH, Hodge A (2011) Growth and symbiotic effectiveness of an arbuscular mycorrhizal fungus in organic matter in competition with soil bacteria. FEMS Microbiol Ecol 76:428–438

    Article  PubMed  CAS  Google Scholar 

  • Lekberg Y, Rosendahl S, Michelsen A, Olsson PA (2013) Seasonal carbon allocation to arbuscular mycorrhizal fungi assessed by microscopic examination, stable isotope probing and fatty acid analysis. Plant Soil 368:547–555

    Article  CAS  Google Scholar 

  • Lorenz K, Preston CM, Raspe S, Morrison IK, Feger KH (2000) Litter decomposition and humus characteristics in Canadian and German spruce ecosystems: information from tannin analysis and 13 C CPMAS NMR. Soil Biol Biochem 32:779–792

    Article  CAS  Google Scholar 

  • Marschner P, Kandeler E, Marschner B (2003) Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol Biochem 35:453–461

    Article  CAS  Google Scholar 

  • Meidute S, Demoling F, Bååth E (2008) Antagonistic and synergistic effects of fungal and bacterial growth in soil after adding different carbon and nitrogen sources. Soil Biol Biochem 40:2334–2343

    Article  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nebbioso A, Piccolo A (2011) Basis of a humeomics science: chemical fractionation and molecular characterization of humic biosuprastructures. Biomacromolecules 12:1187–1199

    Article  PubMed  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. American Society of Agronomy, Madison, pp 539–579

  • Olsson PA (1999) Signature fatty acids provide tools for determination of distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29:303–310

    Article  CAS  Google Scholar 

  • Olsson PA, Rahm J, Aliasgharzad N (2010) Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. FEMS Microbiol Ecol 72:123–131

    Article  CAS  Google Scholar 

  • Olsson O, Olsson PA, Hammer EC (2014) Phosphorus and carbon availability regulate structural composition and complexity of AM fungal mycelium. Mycorrhiza 24:443–451

    Article  PubMed  CAS  Google Scholar 

  • Pane C, Piccolo A, Spaccini R, Celano G, Villecco D, Zaccardelli M (2013) Agricultural waste-based composts exhibiting suppressivity to diseases caused by the phytopathogenic soil-borne fungi Rhizoctonia solani and Sclerotinia minor. Appl Soil Ecol 65:43–51

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Piccolo A (2002) The supramolecular structure of humic substances. A novel understanding of humus chemistry and implications in soil Science. Adv Agron 75:57–134

    Article  CAS  Google Scholar 

  • Piccolo A, Spaccini R, Nieder R, Richter J (2004) Sequestration of a biologically labile organic carbon in soils by humified organic matter. Clim Chang 67:329–343

    Article  CAS  Google Scholar 

  • Piccolo A, Conte P, Spaccini R, Mbagwu JSC (2005) Influence of land use on the humic substances of some tropical soils of Nigeria. Eur J Soil Sci 56:343–352

    Article  CAS  Google Scholar 

  • Prokhorov VP, Linnik MA (2011) Morphological, cultural, and biodestructive peculiarities of Chaetomium species. Mosc Univ Biol Sci Bull 66:95–101

    Article  Google Scholar 

  • Ravnskov S, Larsen J, Olsson PA, Jakobsen I (1999) Effects of various organic compounds on growth and phosphorus uptake of an arbuscular mycorrhizal fungus. New Phytol 141:517–524

    Article  CAS  Google Scholar 

  • Rineau F, Shah F, Smits MM, Persson P, Johansson T, Carleer R, Troein C, Tunlid A (2013) Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus. ISME J 7:2010–2022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rousk J, Bååth E (2007) Fungal and bacterial growth in soil with plant materials of different C/N ratios. FEMS Microbiol Ecol 62:258–267

    Article  PubMed  CAS  Google Scholar 

  • Ruíz-Lozano JM, del Carmen PM, Aroca R, Azcón R (2011) The application of a treated sugar beet waste residue to soil modifies the responses of mycorrhizal and non mycorrhizal lettuce plants to drought stress. Plant Soil 346:153–166

    Article  CAS  Google Scholar 

  • Saetre P, Bååth E (2000) Spatial variation and patterns of soil microbial community structure in a mixed spruce–birch stand. Soil Biol Biochem 32:909–917

    Article  CAS  Google Scholar 

  • Sainz MJ, Taboada-Castro MT, Vilarino A (1998) Growth, mineral nutrition and mycorrhizal colonization of red clover and cucumber plants grown in soil amended with composted urban wastes. Plant Soil 205:85–92

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008). Mycorrhizal symbiosis. 3° ed., Academic Press

  • Spaccini R, Piccolo A (2007) Molecular characterization of compost at increasing stages of maturity. 2. Thermochemolysis-GC-MS and 13C-CPMAS-NMR spectroscopy. J Agric Food Chem 55:2303–2311

    Article  PubMed  CAS  Google Scholar 

  • Spaccini R, Piccolo A (2009) Molecular characteristics of humic acids extracted from compost at increasing maturity stages. Soil Biol Biochem 41:1164–1172

    Article  CAS  Google Scholar 

  • Spaccini R, Piccolo A (2012) Carbon sequestration in soils by hydrophobic protection and in situ catalyzed photo-polymerization of soil organic matter (SOM): chemical and physical–chemical aspects of SOM in field plots. In: Piccolo A (ed) Carbon sequestration in agricultural soils. Springer Verlag, Heidelberg, pp 61–106

  • Spaccini R, Song XY, Cozzolino V, Piccolo A (2013) Molecular evaluation of soil organic matter characteristics in three agricultural soils by improved off-line thermochemolysis: the effect of hydrofluoric acid demineralisation treatment. Anal Chim Acta 802:46–55

    Article  PubMed  CAS  Google Scholar 

  • Steger K, Sjogren AM, Jarvis A, Jansson JK, Sundh I (2007) Development of compost maturity and Actinobacteria populations during full-scale composting of organic household waste. J Appl Microbiol 103:487–498

    Article  PubMed  CAS  Google Scholar 

  • Sundh I, Nilsson M, Borga P (1997) Variation in microbial community structure in two boreal peatlands as determined by analysis of phospholipid fatty acid profiles. Appl Environ Microbiol 63:1476–1482

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tejada M, Hernandez MT, Garcıa C (2006) Application of two organic amendments on soil restoration: effects on the soil biological properties. J Environ Qual 35:1010–1017

    Article  PubMed  CAS  Google Scholar 

  • Treonis AM, Ostle NJ, Stott AW, Primrose R, Grayston SJ, Ineson P (2004) Identification of groups of metabolically active rhizosphere microorganisms by stable isotope probing of PLFAs. Soil Biol Biochem 36:533–537

    Article  CAS  Google Scholar 

  • Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515

    Article  Google Scholar 

  • van Aarle IM, Olsson PA (2003) Fungal lipid accumulation and development of mycelial structures by two arbuscular mycorrhizal fungi. Appl Environ Microbiol 69:6762–6767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Lett Nat 396:69–72

    Article  CAS  Google Scholar 

  • Vane CH, Drage TC, Snape CE, Stephenson MH, Foster C (2005) Decay of cultivated apricot wood (Prunus armeniaca) by the ascomycete Hypocrea sulphurea, using solid state 13C NMR and off-line TMAH thermochemolysis with GC-MS. Int Biodeter Biodegrad 55:175–185

    Article  CAS  Google Scholar 

  • Williams ST, Robinson CS (1981) The role of streptomycetes in decomposition of chitin in acid soils. J Gen Microbiol 127:55–63

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Pierluigi Mazzei for the help with multivariate statistical analysis. This work was supported by funds of the University of Naples Federico II, within the 2010 “FARO” program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenza Cozzolino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cozzolino, V., Di Meo, V., Monda, H. et al. The molecular characteristics of compost affect plant growth, arbuscular mycorrhizal fungi, and soil microbial community composition. Biol Fertil Soils 52, 15–29 (2016). https://doi.org/10.1007/s00374-015-1046-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-015-1046-8

Keywords

Navigation