Skip to main content
Log in

A review of cloud-resolving model studies of convective processes

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Convective processes affect large-scale environments through cloud-radiation interaction, cloud microphysical processes, and surface rainfall processes. Over the last three decades, cloud-resolving models (CRMs) have demonstrated to be capable of simulating convective-radiative responses to an imposed largescale forcing. The CRM-produced cloud and radiative properties have been utilized to study the convective-related processes and their ensemble effects on large-scale circulations. This review summarizes the recent progress on the understanding of convective processes with the use of CRM simulations, including precipitation processes; cloud microphysical and radiative processes; dynamical processes; precipitation efficiency; diurnal variations of tropical oceanic convection; local-scale atmosphere-ocean coupling processes; and tropical convective-radiative equilibrium states. Two different ongoing applications of CRMs to general circulation models (GCMs) are discussed: replacing convection and cloud schemes for studying the interaction between cloud systems and large-scale circulation, and improving the schemes for climate simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamec, D., R. L. Elsberry, R. W Garwood, and R. L. Haney, 1981: An embedded mixed-layer-ocean circulation model. Dyn. Atmos. Oceans, 6(2), 69–96.

    Google Scholar 

  • Braham, R. R. Jr., 1952: The water and energy budgets of the thunderstorm and their relation to thunderstorm development. J. Meteor., 9, 227–242.

    Google Scholar 

  • Cao, Z., and H. Cho, 1995: Generation of moist vorticity in extratropical cyclones. J. Atmos. Sci., 52, 3263–3281.

    Google Scholar 

  • Chao, J., 1961: A nonlinear analysis of development of thermal convection in a stratified atmosphere. Acta Meteorologica Sinica, 31, 191–204. (in Chinese)

    Google Scholar 

  • Chao, J., 1962: On the nonlinear impacts of stratification and wind on development of small-scale disturbances. Acta Meteorologica Sinica, 32, 164–176. (in Chinese)

    Google Scholar 

  • Chao, W. C., and S. J. Lin, 1994: Tropical intraseasonal oscillation, super cloud clusters, and cumulus convection schemes. J. Atmos. Sci., 51, 1282–1297.

    Google Scholar 

  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in General Circulation Model. NASA Technical Memorandum 104606, Vol. 3, 85pp.

  • Chou, M.-D., D. P. Kratz, and W. Ridgway, 1991: IR radiation parameterization in numerical climate studies. J. Climate, 4, 424–437.

    Google Scholar 

  • Chou, M.-D., M. J. Suarez, C.-H. Ho, M. M.-H. Yan, and K.-T. Lee, 1998: Parameterizations for cloud overlapping and shortwave single-scattering properties for use in General Circulation and Cloud Ensemble Models. J. Climate, 11, 202–214.

    Google Scholar 

  • Cui, X., and X. Li, 2006: The role of surface evaporation in surface rainfall processes. J. Geophys. Res., 111, D17112, doi:10.1029/2005JD006876.

  • Cui, X., Y. Zhu, and X. Li, 2007: Cloud microphysical properties in tropical convective and stratiform regions. Meteor. Atmos. Phys., 98, 1–11.

    Google Scholar 

  • Das, S., D. Johnson and W.-K. Tao, 1999: Single-column and cloud ensemble model simulations of TOGA COARE convective systems. J. Meteor. Soc. Japan, 77, 803–826.

    Google Scholar 

  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560–581.

    Google Scholar 

  • Droegemeier, K. K., and S. M. Lazarus, 1993: The influence of helicity on numerically simulated convective storms. Mon. Wea. Rev., 121, 2005–2029.

    Google Scholar 

  • Emanuel, K. A., 1979: Inertial instability and mesoscale convective systems. Part I: Linear theory of inertial instability in rotating viscous fluids. J. Atmos. Sci., 36, 2425–2449.

    Google Scholar 

  • Fovell, R. G., and Y. Ogura, 1988: Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci., 45, 3846–3879.

    Google Scholar 

  • Gao, S., 2007: A three dimensional dynamic vorticity vector associated with tropical oceanic convection. J. Geophys. Res., 112, doi: 10.1029/2006JD008247.

  • Gao, S., and X. Li, 2008: Cloud Resolving modeling of Convective Processes. Springer, Netherlands, 272pp.

    Google Scholar 

  • Gao, S., T. Lei, and Y. Zhou, 2002: Moist potential vorticity anomaly with heat and mass forcings in torrential rain system. Chinese Physical Letters, 19, 878–880.

    Google Scholar 

  • Gao, S., F. Ping, X. Li, and W.-K. Tao, 2004: A convective vorticity vector associated with tropical convection: A 2D cloud-resolving modeling study. J. Geophys. Res., 109, D14106, doi: 10.1029/2004JD004807.

  • Gao, S., X. Cui, Y. Zhu, and X. Li, 2005a: Surface rainfall processes as simulated in a cloud resolving model. J. Geophys. Res., 110, D10202, doi: 10.1029/2004JD005467.

  • Gao, S., X. Cui, Y. Zhou, X. Li, and W.-K. Tao, 2005b: A modeling study of moist and dynamic vorticity vectors associated with 2D tropical convection. J. Geophys. Res., 110, D17104, doi: 10.1029/2004JD005675.

  • Gao, S., F. Ping, and X. Li, 2006a: Cloud microphysical processes associated with the diurnal variations of tropical convection: A 2D cloud resolving modeling study. Meteor. Atmos. Phys., 91, 9–16.

    Google Scholar 

  • Gao, S., F. Ping, and X. Li, 2006b: Tropical heat/water vapor quasi-equilibrium and cycle as simulated in a 2D cloud resolving model. Atmospheric Research, 79, 15–29.

    Google Scholar 

  • Gao, S., F. Ping, X. Cui, and X. Li, 2006c: Short timescale air-sea coupling in the tropical deep convective regime. Meteor. Atmos. Phys., 93, 37–44.

    Google Scholar 

  • Gao, S., L. Ran, and X. Li, 2006d: Impacts of ice microphysics on rainfall and thermodynamic processes in the tropical deep convective regime: A 2D cloud-resolving modeling study. Mon. Wea. Rev., 134, 3015–3024.

    Google Scholar 

  • Gao, S., Y. Zhou, and X. Li, 2007a: Effects of diurnal variations on tropical equilibrium states: A two-dimensional cloud-resolving modeling study. J. Atmos. Sci., 64, 656–664.

    Google Scholar 

  • Gao, S., X. Li, W.-K. Tao, C.-L. Shie, and S. Lang, 2007b: Convective and moist vorticity vectors associated with three-dimensional tropical oceanic convection during KWAJEX. J. Geophys. Res., 112, D01104, doi:10.1029/2006JD007179.

  • Grabowski, W. W., 1998: Toward cloud resolving modeling of large-scale tropical circulations: A simple cloud microphysics parameterization. J. Atmos. Sci., 55, 3283–3298.

    Google Scholar 

  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 58, 978–997.

    Google Scholar 

  • Grabowski, W. W., 2003: Impact of ice microphysics on multiscale organization of tropical convection in two-dimensional cloud-resolving simulations. Quart. J. Roy. Meteor. Soc., 129, 67–81.

    Google Scholar 

  • Grabowski, W. W., and P. K. Smolarkiewicz, 1999: CRCP: A cloud-resolving convection parameterization for modeling the tropical convecting atmosphere. Physica D, 133, 171–178.

    Google Scholar 

  • Grabowski, W. W., M. W. Moncrieff, and J. T. Kiehl, 1996a: Long-term behavior of precipitating tropical cloud systems: A numerical study. Quart. J. Roy. Meteor. Soc., 122, 1019–1042.

    Google Scholar 

  • Grabowski, W. W., X. Wu, and M. W. Moncrieff, 1996b: Cloud-resolving model of tropical cloud systems during Phase III of GATE. Part I: Two-dimensional experiments. J. Atmos. Sci., 53, 3684–3709.

    Google Scholar 

  • Grabowski, W. W., X. Wu, M. W. Moncrieff, and W. D. Hall, 1998: Cloud-resolving model of tropical cloud systems during Phase III of GATE. Part II: Effects of resolution and the third spatial dimension. J. Atmos. Sci., 55, 3264–3282.

    Google Scholar 

  • Grabowski, W. W., X. Wu, and M. W. Moncrieff, 1999: Cloud-resolving model of tropical cloud systems during Phase III of GATE. Part III: Effects of cloud microphysics. J. Atmos. Sci., 56, 2384–2402.

    Google Scholar 

  • Grabowski, W. W., J.-I. Yano, and M. W. Moncrieff, 2000: Cloud resolving modeling of tropical circulations driven by large-scale SST gradients. J. Atmos. Sci., 57, 2022–2039.

    Google Scholar 

  • Grabowski, W. W., and M. W. Moncrieff, 2001: Largescale organization of tropical convection in two-dimensional explicit numerical simulations. Quart. J. Roy. Meteor. Soc., 127, 445–468.

    Google Scholar 

  • Gray, W. M., and R. W. Jacobson, 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 1171–1188.

    Google Scholar 

  • Heymsfield, G. M., and S. Schotz, 1985: Structure and evolution of a severe squall line over Oklahoma. Mon. Wea. Rev., 113, 1563–1589.

    Google Scholar 

  • Johnson, D. E., W.-K. Tao, J. Simpson, and C.-H. Sui, 2002: A study of the response of deep tropical clouds to large-scale thermodynamic forcings. Part I: Modeling strategies and simulations of TOGA COARE convective systems. J. Atmos. Sci., 59, 3492–3518.

    Google Scholar 

  • Khairoutdinov, M., and D. A. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate Model: Preliminary results. Geophys. Res. Lett., 28, 3617–3620.

    Google Scholar 

  • Khairoutdinov, M., D. A. Randall, and C. DeMott, 2005: Simulations of the atmospheric general circulations using a cloud-resolving model as a superparameterization of physical processes. J. Atmos. Sci., 62, 2136–2154.

    Google Scholar 

  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–1093.

    Google Scholar 

  • Kraus, E. B., 1963: The diurnal precipitation change over the sea. J. Atmos. Sci., 20, 546–551.

    Google Scholar 

  • Krueger, S. K., 1988: Numerical simulation of tropical cumulus clouds and their interaction with the subcloud layer. J. Atmos. Sci., 45, 2221–2250.

    Google Scholar 

  • Krueger, S. K., Q. Fu, K. N. Liou, and H.-N. S. Chin, 1995: Improvement of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. J. Appl. Meteor., 34, 281–287.

    Article  Google Scholar 

  • Lang, S., W.-K. Tao, J. Simpson, and B. Ferrier, 2003: Modeling of convective-stratiform precipitation processes: Sensitivity to partitioning methods. J. Appl. Meteor., 42, 505–527.

    Google Scholar 

  • Lau, K.-M., L. Peng, C.-H. Sui, and T. Nakazawa, 1989: Super cloud clusters, westerly wind bursts, 30–60 day oscillations, and ENSO: A unified view. J. Meteor. Soc. Japan, 67, 205–219.

    Google Scholar 

  • Lau, K.-M., T. Nakazawa, and C.-H. Sui, 1991: Observations of cloud cluster hierarchy over the tropical western Pacific. J. Geophys. Res., 96, 3197–3208.

    Google Scholar 

  • Lau, K.-M., C.-H. Sui, and W.-K. Tao, 1993: A preliminary study of the tropical water cycle using the Goddard Cumulus Ensemble model. Bull. Amer. Meteor. Soc., 74, 1313–1321.

    Google Scholar 

  • Lau, K.-M., C.-H. Sui, M.-D. Chou, and W.-K. Tao, 1994: An inquiry into the cirrus-cloud thermostat effect for tropical sea surface temperature. Geophys. Res. Lett., 21, 1157–1160.

    Google Scholar 

  • Li, X., 2004: Cloud modeling in the tropical deep convective regime. Observation, Theory, and Modeling of Atmospheric Variability, X. Zhu, Ed., World Sci., River Edge, N. J., 206–223.

    Google Scholar 

  • Li, X., 2006: Cloud microphysical and precipitation responses to a large-scale forcing in the tropical deep convective regime. Meteor. Atmos. Phys., 94, 87–102.

    Google Scholar 

  • Li, X., C.-H. Sui, D. Adamec, and K.-M. Lau, 1998: Impacts of precipitation in the upper ocean in the western Pacific warm pool during TOGA COARE. J. Geophys. Res., 103, 5347–5359.

    Google Scholar 

  • Li, X., C.-H. Sui, K.-M. Lau, and M.-D. Chou, 1999: Large-scale forcing and cloud-radiation interaction in the tropical deep convective regime. J. Atmos. Sci., 56, 3028–3042.

    Google Scholar 

  • Li, X., C.-H. Sui, K.-M. Lau, and D. Adamec, 2000: Effects of precipitation on ocean mixed-layer temperature and salinity as simulated in a 2-D coupled ocean-cloud resolving atmosphere model. J. Meteor. Soc. Japan, 78, 647–659.

    Google Scholar 

  • Li, X., C.-H. Sui, and K.-M. Lau, 2002a: Precipitation efficiency in the tropical deep convective regime: A 2D cloud resolving modeling study. J. Meteor. Soc. Japan, 80, 205–212.

    Google Scholar 

  • Li, X., C.-H. Sui, and K.-M. Lau, 2002b: Interactions between tropical convection and its environment: An energetics analysis of a 2-D cloud resolving simulation. J. Atmos. Sci., 59, 1712–1722.

    Google Scholar 

  • Li, X., C.-H. Sui, K.-M. Lau, and W.-K. Tao, 2005: Tropical convective responses to microphysical and radiative processes: A 2D cloud-resolving modeling study. Meteor. Atmos. Phys., 90, 245–259.

    Google Scholar 

  • Li, X., S. Zhang, and D.-L. Zhang, 2006: Thermodynamic, cloud microphysics and rainfall responses to initial moisture perturbations in the tropical deep convective regime. J. Geophys. Res., 111, D14207, doi:10.1029/2005JD006968.

  • Liang, X.-Z., and X. Wu, 2005: Evaluation of a GCM subgrid cloud-radiation interaction parameterization using cloud-resolving model simulations. Geophys. Res. Lett., 32, L06801, doi:10.1029/2004GL022301.

  • Lilly, D. K., 1986: The structure, energetics and propagation of rotating convective storms. Part II: Helicity and storm stabilization. J. Atmos. Sci., 43, 126–140.

    Google Scholar 

  • Lipps, F. B., and R. S. Hemler, 1986: Numerical simulation of deep tropical convection associated with large-scale convergence. J. Atmos. Sci., 43, 1796–1816.

    Google Scholar 

  • Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.

    Google Scholar 

  • Liu, C., and M. W. Moncrieff, 1998: A numerical study of the diurnal cycle of tropical oceanic convection. J. Atmos. Sci., 55, 2329–2344.

    Google Scholar 

  • Louis, J. F., M. Tiedke, and J. F. Geleyn, 1982: A short history of the PBL parameterization at ECMWF. Workshop on Planetary Boundary Layer Parameterization, ECMWF. Reading, UK, 59–80.

    Google Scholar 

  • McCumber, M., W.-K. Tao, J. Simpson, R. Penc, and S.-T. Soong, 1991: Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection. J. Appl. Meteor., 30, 985–1004.

    Article  Google Scholar 

  • Moncrieff, M. W., and M. J. Miller, 1976: The dynamics and simulation of tropical cumulonimbus and squall line. Quart. J. Roy. Meteor. Soc., 102, 373–394.

    Google Scholar 

  • Moncrieff, M. W., and W.-K. Tao, 1999: Cloud-resolving models. Global Water and Energy Cycles, K. Browning and R. J. Gurney, Eds., Cambridge University Press, 200–209.

  • Nakajima, K., and T. Matsuno, 1988: Numerical experiments concerning the origin of cloud clusters in the tropical atmosphere. J. Meteor. Soc. Japan, 66, 309–329.

    Google Scholar 

  • Nakajima, T., M. Tsukamoto, Y. Tsushima, A. Numaguti, and T. Kimura, 2000: Modeling of the radiative process in an atmospheric general circulation model. Appl. Opt., 39, 4869–4878.

    Article  Google Scholar 

  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor Soc. Japan, 66, 823–839.

    Google Scholar 

  • Nicholls, M. E., 1987: A comparison of the results of a two-dimensional numerical simulation of a tropical squall line with observations. Mon. Wea. Rev., 115, 3055–3077.

    Google Scholar 

  • Niiler, P. P., and E. B. Kraus, 1977: One-dimensional models. Modeling and Prediction of the Upper Layers of the Ocean, E. B. Kraus, Ed., Pergamon, New York, 143–172.

    Google Scholar 

  • Numaguti, A., and Y.-Y. Hayashi, 1991: Behavior of cumulus activity and the structures of circulations in an “aqua planet” model. Part I. The structure of the super cloud clusters. J. Meteor. Soc. Japan, 69, 541–561.

    Google Scholar 

  • Peng, L., C.-H. Sui, K.-M. Lau, and W.-K. Tao, 2001: Genesis and evolution of hierarchical cloud clusters in a two-dimensional cumulus-resolving model. J. Atmos. Sci., 58, 877–895.

    Google Scholar 

  • Ping, F., Z. Luo, and X. Li, 2008: Kinematics, cloud microphysics, and spatial structures of tropical cloud clusters: A two-dimensional cloud-resolving modeling study. Atmospheric Research, doi: 10.1016/j.atmosres.2007.11.027.

  • Ping, F., Z. Luo, and X. Li, 2007: Microphysical and radiative effects of ice clouds on tropical equilibrium states: A two-dimensional cloud-resolving modeling study. Mon. Wea. Rev., 135, 2794–2802.

    Google Scholar 

  • Randall, D. A., Harshvardhan, and D. A. Dazlich, 1991: Diurnal variability of the hydrologic cycle in a general circulation model. J. Atmos. Sci., 48, 40–62.

    Google Scholar 

  • Randall, D. A., M. Khairoutdinov, A. Arakawa, W. W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 1547–1564.

    Google Scholar 

  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463–485.

    Google Scholar 

  • Rutledge, S. A., and R. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part VIII: A model for the “seeder-feeder” process in warmfrontal rainbands. J. Atmos. Sci., 40, 1185–1206.

    Google Scholar 

  • Rutledge, S. A., and R. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 2949–2972.

    Google Scholar 

  • Satoh, M., H. Tomita, H. Miura, S. Iga, and T. Nasumo, 2005: Development of a global resolving model—A multi-scale structure of tropical convections. J. Earth Sim., 3, 1–9.

    Google Scholar 

  • Shie, C.-L, W.-K. Tao, J. Simpson, and C.-H. Sui, 2003: Quasi-equilibrium states in the tropics simulated by a cloud-resolving model. Part I: Specific features and budget analysis. J. Climate, 16, 817–833.

    Google Scholar 

  • Song, X., X. Wu, G. J. Zhang, and R. Arritt, 2007: Dynamical effects of convective momentum transports on global climate simulations. J. Climate, 64, 4506–4513.

    Google Scholar 

  • Sui, C.-H., and K.-M. Lau, 1992: Multi-scale phenomena in the tropical atmosphere over the western Pacific. Mon Wea. Rev., 120, 407–430.

    Google Scholar 

  • Sui, C.-H., and X. Li, 2005: A tendency of cloud ratio associated with the development of tropical water and ice clouds. Terr. Atmos. Oceanic Sci., 16, 419–434.

    Google Scholar 

  • Sui, C.-H., K.-M. Lau, W.-K. Tao, and J. Simpson, 1994: The tropical water and energy cycles in a cumulus ensemble model. Part I: Equilibrium climate. J. Atmos. Sci., 51, 711–728.

    Google Scholar 

  • Sui, C.-H., K.-M. Lau, Y. Takayabu, and D. Short, 1997: Diurnal variations in tropical oceanic cumulus ensemble during TOGA COARE. J. Atmos. Sci., 54, 639–655.

    Google Scholar 

  • Sui, C.-H., X. Li, and K.-M. Lau, 1998: Radiativeconvective processes in simulated diurnal variations of tropical oceanic convection. J. Atmos. Sci., 55, 2345–2359.

    Google Scholar 

  • Sui, C.-H., X. Li, M.-J. Yang, and H.-L. Huang, 2005: Estimation of Oceanic Precipitation Efficiency in Cloud Models. J. Atmos. Sci., 62, 4358–4370.

    Google Scholar 

  • Sui, C.-H., X. Li, K.-M. Lau, W.-K. Tao, M.-D. Chou, and M.-J. Yang, 2007a: Convective-radiative-mixing processes in the Tropical Ocean-Atmosphere. Recent Progress in Atmospheric Sciences with Applications to the Asia-Pacific Region, World Scientific Publication. (in press)

  • Sui, C.-H., X. Li, and M.-J. Yang, 2007b: On the definition of precipitation efficiency. J. Atmos. Sci., 64, 4506–4513.

    Google Scholar 

  • Tao, W.-K., 2003: Goddard Cumulus Ensemble (GCE) model: Application for understanding precipitation processes. Meteor. Monogr.-Cloud Systems, Hurricanes and TRMM, 29, 107–138.

    Google Scholar 

  • Tao, W.-K., 2007: Cloud resolving modeling. J. Meteor. Soc. Japan, 85, 305–330.

    Google Scholar 

  • Tao, W.-K., and J. Simpson, 1984: Cloud interactions and merging: Numerical simulations. J. Atmos. Sci., 41, 2901–2917.

    Google Scholar 

  • Tao, W.-K., and S.-T. Soong, 1986: The study of the response of deep tropical clouds to mesoscale processes: Three-dimensional numerical experiments. J. Atmos. Sci., 43, 2653–2676.

    Google Scholar 

  • Tao, W.-K., and J. Simpson, 1989a: Modeling study of a tropical squall-type convective line. J. Atmos. Sci., 46, 177–202.

    Google Scholar 

  • Tao, W.-K., and J. Simpson, 1989b: A further study of cumulus interaction and mergers: Three-dimensional simulations with trajectory analyses. J. Atmos. Sci., 46, 2974–3004.

    Google Scholar 

  • Tao, W.-K., and J. Simpson, 1993: The Goddard Cumulus Ensemble model. Part I: Model description. Terrestrial, Atmospheric Oceanic Sciences, 4, 35–72.

    Google Scholar 

  • Tao, W.-K., and M. Moncrieff, 2003: Cloud Modeling. Encyclopedia of Atmospheric Sciences, Holtin et al., Eds., 539–548.

  • Tao, W.-K., J. Simpson, and S.-T. Soong, 1987: Statistical properties of a cloud ensemble: A numerical study. J. Atmos. Sci., 44, 3175–3187.

    Google Scholar 

  • Tao, W.-K., J. Simpson, and M. McCumber, 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117, 231–235.

    Google Scholar 

  • Tao, W.-K., J. Simpson, and S.-T. Soong, 1991: Numerical simulation of a subtropical squall line over the Taiwan Strait. Mon. Wea. Rev., 119, 2699–2723.

    Google Scholar 

  • Tao, W.-K., S. Lang, J. Simpson, C.-H. Sui, B. S. Ferrier, and M.-D. Chou, 1996: Mechanisms of cloud-radiation interaction in the Tropics and midlatitude. J. Atmos. Sci., 53, 2624–2651.

    Google Scholar 

  • Tao, W.-K., J. Simpson, C.-H. Sui, C.-L. Shie, B. Zhou, K.-M. Lau, and M. W. Moncrieff, 1999: Equilibrium states simulated by cloud-resolving models. J. Atmos. Sci., 56, 3128–3139.

    Google Scholar 

  • Tao, W.-K., D. Johnson, C.-L. Shie, and J. Simpson, 2004: The atmospheric energy budget and large-scale precipitation efficiency of convective systems during TOGA COARE, GATE, SCSMEX, and ARM: Cloud-resolving model simulations. J. Atmos. Sci., 61, 2405–2423.

    Google Scholar 

  • Tomita, H., H. Miura, S. Iga, T. Nasuno, and M. Satoh, 2005: A global cloud-resolving simulation: Preliminary results from an aqua planetary experiment. Geophys. Res. Lett., 32, L08805, doi: 10.1029/2005GL022459.

  • Tompkins, A. M., 2000: The impact of dimensionality on long-term cloud resolving model simulations. Mon. Wea. Rev., 128, 1521–1535.

    Google Scholar 

  • Tompkins, A. M., and G. C. Craig, 1998: Radiativeconvective equilibrium in a three-dimensional cloud ensemble model. Quart. J. Roy. Meteor. Soc., 124, 2073–2097.

    Google Scholar 

  • Wang, Y., W.-K. Tao, and J. Simpson, 1996: The impact of ocean surface fluxes on a TOGA COARE convective System. Mon. Wea. Rev., 124, 2100–2125.

    Google Scholar 

  • Wang, Y., W.-K. Tao, J. Simpson, and S. Lang, 2003: The sensitivity of tropical squall lines (GATE and TOGA COARE) to surface fluxes: 3-D Cloud resolving model simulations, Quart J. Roy. Meteor. Soc., 129, 987–1007.

    Google Scholar 

  • Wu, X., 2002: Effects of ice microphysics on tropical radiative-convective-oceanic quasi-equilibrium states. J. Atmos. Sci., 59, 1885–1897.

    Google Scholar 

  • Wu, X., and M. W. Moncrieff, 1996: Collective effects of organized convection and their approximation in general circulation models. J. Atmos. Sci., 53, 1477–1495.

    Google Scholar 

  • Wu, X., and M. A. LeMone, 1999: Fine structure of cloud patterns within the intraseasonal oscillation during TOGA COARE. Mon. Wea. Rev., 127, 2503–2513.

    Google Scholar 

  • Wu, X., and M. W. Moncrieff, 1999: Effects of sea surface temperature and large-scale dynamics on the thermodynamic equilibrium state and convection over the tropical western Pacific. J. Geophys. Res., 104, 6093–6100

    Google Scholar 

  • Wu, X., and M. W. Moncrieff, 2001a: Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part III: Effects on the energy budget and SST. J. Atmos. Sci., 58, 1155–1168.

    Google Scholar 

  • Wu, X., and M.W. Moncrieff, 2001b: Sensitivity of singlecolumn model solutions to convective parameterizations and initial conditions. J. Climate, 14, 2563–2582.

    Google Scholar 

  • Wu, X., and X.-Z. Liang, 2005a: Radiative effects of cloud horizontal inhomogeneity and vertical overlap identified from a month-long cloud-resolving simulation. J. Atmos. Sci., 62, 4105–4112.

    Google Scholar 

  • Wu, X., and X. Liang, 2005b: Effect of subgrid cloud-radiation interaction on climate simulations. Geophys. Res. Lett., 32, L24806, doi:10.1029/2005GL024432.

  • Wu, X., and S. Guimond, 2006: Two-and three-dimensional cloud-resolving model simulations of the mesoscale enhancement of surface heat fluxes by precipitating deep convection. J. Climate, 19, 139–149.

    Google Scholar 

  • Wu, X., W. W. Grabowski, and M. W. Moncrieff, 1998: Long-term evolution of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part I: Two-dimensional cloud-resolving model. J. Atmos. Sci., 55, 2693–2714.

    Google Scholar 

  • Wu, X., W. D. Hall, W. W. Grabowski, M. W. Moncrieff, W. D. Collins, and J. T. Kiehl, 1999: Longterm evolution of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part II: Effects of ice microphysics on cloud-radiation interaction. J. Atmos. Sci., 56, 3177–3195.

    Google Scholar 

  • Wu, X., X.-Z. Liang, and G.-J. Zhang 2003: Seasonal migration of ITCZ precipitation across the equator: Why can’t GCMs simulate it? Geophys. Res. Lett., 30(15), 1824, doi:10.1029/2003GL017198.

    Google Scholar 

  • Wu, X., X.-Z. Liang, and S. Park, 2007a: Cloud-resolving model simulations over the ARM SGP. Mon. Wea. Rev., 135, 2841–2853.

    Google Scholar 

  • Wu, X., L. Deng, X. Song, and G.-J. Zhang, 2007b: Coupling of convective momentum transport with convective heating in global climate simulations. J. Atmos. Sci., 64, 1334–1349.

    Google Scholar 

  • Wu, X., L. Deng, X. Song, G. Vettoretti, W. R. Peltier, and G. J. Zhang, 2007c: Impact of a modified convective scheme on the MJO and ENSO in a coupled climate model. Geophys. Res. Lett., 34, L16823, doi:10.1029/2007GL030637.

  • Xu, K.-M., and D. A. Randall, 1995: Impact of interactive radiative transfer on the macroscopic behavior of cumulus ensembles. Part II: Mechanisms for cloud-radiation interactions. J. Atmos. Sci., 52, 800–817.

    Google Scholar 

  • Xu, K.-M., and D. A. Randall, 1996: Explicit simulation of cumulus ensembles with the GATE Phase III data: Comparison with observations. J. Atmos. Sci., 53, 3710–3736.

    Google Scholar 

  • Yano, J.-I., J. C. McWilliams, M. W. Moncrieff, and K. A. Emanuel, 1995: Hierarchical tropical cloud systems in an analog shallow-water model. J. Atmos. Sci., 52, 1723–1742.

    Google Scholar 

  • Yoshizaki, M., 1986: Numerical simulations of tropical squall-line clusters: Two-dimensional model. J. Meteor. Soc. Japan, 64, 469–491.

    Google Scholar 

  • Zhang, G.-J., and X. Wu, 2003: Convective momentum transport and perturbation pressure field from a cloud-resolving model simulation. J. Atmos. Sci., 60, 1120–1139.

    Google Scholar 

  • Zhou, Y., X. Cui, and X. Li, 2006: Contribution of cloud condensate to surface rainfau process. Progress in Natual Science, 16(9), 967–973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Li, X. A review of cloud-resolving model studies of convective processes. Adv. Atmos. Sci. 25, 202–212 (2008). https://doi.org/10.1007/s00376-008-0202-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-008-0202-6

Key words

Navigation