Skip to main content
Log in

Analysis of the microphysical structure of heavy fog using a droplet spectrometer: A case study

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The microphysical properties of a long-lasting heavy fog event are examined based on the results from a comprehensive field campaign conducted during the winter of 2006 at Pancheng (32.2°N, 118.7°E), Jiangsu Province, China. It is demonstrated that the key microphysical properties (liquid water content, fog droplet concentration, mean radius and standard deviation) exhibited positive correlations with one another in general, and that the 5-min-average maximum value of fog liquid water content was sometimes greater than 0.5 g m−3. Further analysis shows that the unique combination of positive correlations likely arose from the simultaneous supply of moist air and fog condensation nuclei associated with the advection of warm air, which further led to high liquid water content. High values of liquid water content and droplet concentration conspired to cause low visibility (<50 m) for a prolonged period of about 40 h. Examination of the microphysical relationships conditioned by the corresponding autoconversion threshold functions shows that the collision-coalescence process was sometimes likely to occur, weakening the positive correlations induced by droplet activation and condensational growth. Statistical analysis shows that the observed droplet size distribution can be described well by the Gamma distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beiderwieden, E., A. Schmidt, Y. J. Hsia, S. C. Chang, T. Wrzesinsky, and O. Klemm, 2007: Nutrient input through occult and wet deposition into a subtropical montane cloud forest. Water, Air, and Soil Pollution, 186, 273–288.

    Article  Google Scholar 

  • Costa, A.A., C. J. deOliveira, J. C. P. deOliveira, and A. J. d. C. Sampaio, 2000: Microphysical observations of warm cumulus clouds in Ceará Brazil. Atmospheric Research, 54(2–3), 167–199.

    Article  Google Scholar 

  • Croft, P. J., R. L. Pfost, J. M. Medlin, and G. A. Johnson, 1997: Fog forecasting for the southern region: A conceptual model approach. Wea. Forecasting, 12(3), 545–556.

    Article  Google Scholar 

  • Eldridge, R. G., 1966: Haze and fog aerosol distributions. J. Atmos. Sci., 23, 605–613.

    Article  Google Scholar 

  • Eldridge, R. G., 1971: The relationship between visibility and liquid water content in fog. J. Atmos. Sci., 28, 1183–1186.

    Article  Google Scholar 

  • Eugster, W., R. Burkard, F. Holwerda, F. N. Scatena, and L. A. Bruijnzeel, 2006: Characteristics of fog and fogwater fluxes in a Puerto Rican elfin cloud forest. Agricultural and Forest Meteorology, 139, 288–306.

    Article  Google Scholar 

  • Fuzzi, S., and Coauthors, 1992: The Po Valley fog experiment 1989: An overview. Tellus, 44B, 448–468.

    Google Scholar 

  • Garcá-Garcá, F., U. Virafuentes, and G. Montero-Martínez, 2002: Fine-scale measurements of fogdroplet concentrations: A preliminary assessment. Atmospheric Research, 64, 179–189.

    Article  Google Scholar 

  • Gerber, H. E., 1981: Microstructure of a radiation fog. J. Atmos. Sci., 38, 454–458.

    Article  Google Scholar 

  • Gerber, H. E., 1991: Supersaturation and droplet spectral evolution in fog. J. Atmos. Sci., 48, 2569–2588.

    Article  Google Scholar 

  • Guedalia, D., and T. Bergot, 1994: Numerical forecasting of radiation fog. Part II: A comparison of model simulation with several observed fog events. Mon. Wea. Rev., 122, 1231–1246.

    Article  Google Scholar 

  • Gultepe, I., and G. A. Isaac, 2004: An analysis of cloud droplet number concentration (Nd) for climate studies: Emphasis on constant Nd. Quart J. Roy. Meteor. Soc., 130A(602), 2377–2390.

    Article  Google Scholar 

  • Gultepe, I., and J. A. Milbrandt, 2007: Microphysical observations and mesoscale model simulation of a warm fog case during FRAM project. Pure Appl. Geophys., 164, 1161–1178.

    Article  Google Scholar 

  • Gultepe, I., G. A. Isaac, and K. Strawbridge, 2001: Variability of cloud microphysical and optical parameters obtained from aircraft and satellite remote sensing during RACE. Inter. J. Climate, 21(4), 507–525.

    Article  Google Scholar 

  • Gultepe, I., and Coauthors, 2007: Fog research: A review of past achievements and future perspectives. Pure Appl. Geophys., 164(6), 1121–1159.

    Article  Google Scholar 

  • Gultepe, I., and Coauthors, 2009: The fog remote sensing and modeling field project. Bull. Amer. Meteor. Soc., 90(3), 341–359.

    Article  Google Scholar 

  • Guo, X., and G. Zheng, 2009: Advances in weather modification from 1997 to 2007 in China. Adv. Atmos. Sci., 26(2), 240–252, doi: 10.1007/s00376-009-0240-8.

    Article  Google Scholar 

  • Herckes, P., H. Chang, T. Lee, and J. L. Jr. Collett, 2007: Air pollution processing by radiation fogs. Water, Air, and Soil Pollution, 181, 65–75.

    Article  Google Scholar 

  • Hong, Z., and M. Huang, 1965: The second maximum and other related characteristics of the Southern Mountain cloud spectra. The Study on Microphysics of Cloud/Fog Precipitation in China, Gu, Ed., Science Press, 18–29. (in Chinese)

  • Hsieh, W. C., H. Jonsson, L.-P. Wang, G. Buzorius, R. C. Flagan, J. H. Seinfeld, and A. Nenes, 2009: On the representation of droplet coalescence and autoconversion: Evaluation using ambient cloud droplet size distributions. J. Geophys. Res., 114, D07201, doi: 10.1029/2008JD010502.

    Article  Google Scholar 

  • Huang, Y., Y. Huang, Z. Li, B. Chen, J. Huang, and J. Gu, 2000: The microphysical structure and evolution of winter fog in Xishuangbanna. Acta Meteorologica Sinica, 58(6), 715–725. (in Chinese)

    Google Scholar 

  • Hudson, J. G., 1980: Relationship between fog condensation nuclei and fog microstructure. J. Atmos. Sci., 37, 1854–1867.

    Article  Google Scholar 

  • Hudson, J. G., and G. Svensson, 1995: Cloud microphysical relationships in California marine stratus. J. Appl. Meteor, 34(12), 2655–2666.

    Article  Google Scholar 

  • Jaw, J.-J., 1966: Statistical theory of precipitation processes. Tellus, 18, 722–729.

    Article  Google Scholar 

  • Klemm, O., and T. Wrzesinsky, 2007: Fog deposition fluxes of water and ions to a mountainous site in Central Europe. Tellus, 59, 705–714.

    Article  Google Scholar 

  • Klemm, O., T. Wrzesinsky, and C. Scheer, 2005: Fog water flux at a canopy top: Direct measurement versus one-dimensional model. Atmos. Environ., 39, 5375–5386.

    Google Scholar 

  • Kunkel, B. A., 1984: Parameterization of droplet terminal velocity and extinction coefficient in fog models. J. Appl. Meteor., 23, 34–41.

    Article  Google Scholar 

  • Li, Z., 2001: Study of fog in China over the past 40 years. Acta Meteorologica Sinica, 59(5), 616–624. (in Chinese)

    Google Scholar 

  • Li, Z., L. Zhong, and X. Yu, 1992: The temporal-spatial distribution and physical structure of land fog in southwest China and the Changjiang River Basin. Acta Geographica Sinica, 47(3), 242–251. (in Chinese)

    Google Scholar 

  • Li, Z., J. Huang, Y. Huang, Z. Yang, and Q. Wang, 1999a: Study on the physical process of winter valley fog in Xishuangbanna Region. Acta Meteorological sinica, 13(4), 494–508. (in Chinese)

    Google Scholar 

  • Li, Z., J. Huang, Y. Zhou, and S. Zhu, 1999b: Physical structures of the five-day sustained fog around Nanjing in 1996. Acta Meteorologica Sinica, 57(5), 622–631. (in Chinese)

    Google Scholar 

  • Liu, Y., 1992: Skewness and kurtosis of measured raindrop size distributions. Atmos. Envrion., 26A, 2713–2716.

    Google Scholar 

  • Liu, Y., 1993: Statistical theory of the Marshall-Palmer distribution of raindrops. Atmos. Environ., 27A, 15–19.

    Google Scholar 

  • Liu, Y., and F. Liu, 1994: On the description of aerosol particle size distribution. Atmospheric Research, 31(1–3), 187–198.

    Article  Google Scholar 

  • Liu, Y., L. You, W. Yang, and F. Liu, 1995: On the size distribution of cloud droplets. Atmospheric Research, 35(2–4), 201–216.

    Article  Google Scholar 

  • Liu, Y., P. H. Daum, S. K. Chai, and F. Liu 2002: Cloud parameterizations, cloud physics, and their connections: An overview. Recent Research Developments in Geophysics, Pandalai, Ed., Research Signpost Publisher, 119–142.

  • Liu, Y., P. H. Daum, and R. L. McGraw, 2004: An analytical expression for predicting the critical radius in the autoconversion parameterization. Geophys. Res. Lett., 31, L06121, doi: 10.1029/2003GL019117.

    Article  Google Scholar 

  • Liu, Y., P. H. Daum, and R. L. McGraw, 2005: Size truncation effect, threshold behavior, and a new type of autoconversion parameterization. Geophys. Res. Lett., 32, L11811, doi: 10.1029/2005GL022636.

    Article  Google Scholar 

  • Liu, Y., P. H. Daum, R. L. McGraw, and M. Miller, 2006: Generalized threshold function accounting for effect of relative dispersion on threshold behavior of autoconversion process. Geophys. Res. Lett., 33, L11804, doi: 10.1029/2005GL025500.

    Article  Google Scholar 

  • Lu, C., S. Niu, L. Tang, J. Lü, L. Zhao, and B. Zhu, 2010: Chemical composition of fog water in Nanjing area of China and its related fog microphysics. Atmospheric Research, 97, 47–69, doi: 10.1016/j.atmosres.2010.03.007.

    Article  Google Scholar 

  • Lu, C., S. Niu, J. Yang, and W. Wang, 2008: An observational study on physical mechanism and boundary layer structure of winter advection fog in Nanjing. Journal of Nanjing Institute of Meteorology, 31(4), 520–529. (in Chinese)

    Google Scholar 

  • Niu, S., C. Lu, H. Yu, L. Zhao, and J. Lü, 2010: Fog research in China: An overview. Adv. Atmos. Sci., 27(3), 639–662, doi: 10.1007/s00376-009-8174-8.

    Article  Google Scholar 

  • Pilié, R. J., E. J. Mack, W. C. Kocmond, C. W. Rogers, and W. J. Eadie, 1975: The life cycle of valley fog. Part I: Micrometeorological characteristics. J. Appl. Meteor., 14, 347–363.

    Article  Google Scholar 

  • Pinnick, R. G., D. L. Hoihjelle, G. Fernandez, E. B. Stenmark, J. D. Lindberg, and G. B. Hoidale, 1978: Vertical structure in atmospheric fog and haze and its effects on visible and infrared extinction. J. Atmos. Sci., 35, 2020–2032.

    Article  Google Scholar 

  • Pu, M., and S. Shen, 2001: The climatic characteristics and the main weather systems of Jiangsu fog. Meteorological Decision-Making Service Manual of Jiangsu Province, Pu and Shen, Eds., China Meteorological Press, 91–95. (in Chinese)

  • Roach, W. T., R. Brown, S. J. Caughey, J. A. Garland, and C. J. Readings, 1976: The physics of radiation fog: I-A field study. Quart. J. Roy. Meteor. Soc., 102, 313–333.

    Google Scholar 

  • Tang, H., S. Fan, D. Wu, and X. Deng, 2002: Research of the Microphysical Structure and Evolution of Dense Fog over Nanling Mountain Area. Acta Scientiarum Naturalium Universitatis Sunyatseni, 41(4), 92–96. (in Chinese)

    Google Scholar 

  • Tomasi, C., and F. Tampieri, 1976: Features of the proportionality coefficient in the relationship between visibility and liquid water content in haze and fog. Atmosphere, 14, 61–76.

    Google Scholar 

  • Tong, Y., 2008: Haze phenomenon and analysis of the characeristics of its pollutants in Nanjing area. M.S. thesis, College of Applied Meteorology, Nanjing University of Information and Science, 58pp. (in Chinese)

  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34(6), 1149–1152.

    Article  Google Scholar 

  • Wendisch, M., and Coauthors, 1998: Drop size distribution and LWC in Po Valley Fog. Contrib. Atmos. Phys., 71, 87–100.

    Google Scholar 

  • Wrzesinsky, T., 2003: Direct measurement and evaluation of fog deposition of water and trace suLSTaances into a mountainous forest ecosystem. Ph. D. dissertation, Department of Biology, Chemistry and Geosciences, University of Bayreuth, 108pp. (in German)

  • Zhou, B., and B. S. Ferrier, 2008: Asymptotic analysis of equilibrium in radiation fog. Journal of Applied Meteorology and Climatology, 47, 1704–1722.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengjie Niu  (牛生杰).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, S., Lu, C., Liu, Y. et al. Analysis of the microphysical structure of heavy fog using a droplet spectrometer: A case study. Adv. Atmos. Sci. 27, 1259–1275 (2010). https://doi.org/10.1007/s00376-010-8192-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-010-8192-6

Key words

Navigation