Skip to main content
Log in

El Niño southern oscillation as sporadic oscillations between metastable states

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The main objective of this article is to establish a new mechanism of ENSO, as a self-organizing and selfexcitation system, with two highly coupled processes. The first is the oscillation between the two metastable warm (El Niño phase) and cold events (La Niña phase), and the second is the spatiotemporal oscillation of the sea surface temperature (SST) field. The symbiotic interplay between these two processes gives rises the climate variability associated with the ENSO, leads to both the random and deterministic features of the ENSO, and defines a new natural feedback mechanism, which drives the sporadic oscillation of the ENSO. The new mechanism is rigorously derived using a dynamic transition theory developed recently by the authors, which has also been successfully applied to a wide range of problems in nonlinear sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variabilityin a tropical atmosphere-ocean model. influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 1687–1712.

    Article  Google Scholar 

  • Bjerknes, J., 1969: Atmospheric teleconnections from the Equatorial Pacific. Mon. Wea. Rev., 97(3), 163–72.

    Article  Google Scholar 

  • Branstator, G. W., 1987: A striking example of the atmosphere’s leading traveling pattern. J. Atmos. Sci., 44, 2310–2323.

    Article  Google Scholar 

  • Ghil, M., 2000: Is our climate stable? Bifurcations, transitions and oscillations in climate dynamic. Science for Survival and Sustainable Development, V. I. Keilis-Borok and M. Sánchez Sorondo, Eds., Pontifical Academy of Sciences, Vatican City, 163–184.

    Google Scholar 

  • Huang, J., K. Higuchi, and A. Shabbar, 1998: The relationship between the north atlantic oscillation and El Niño-southern oscillation. Geophys. Res. Lett., 25(14), 2707–2710.

    Article  Google Scholar 

  • Jin, F. F., 1996: Tropical ocean-atmosphere interaction, the pacific cold tongue, and the el nio southern oscillation. Science, 274, 76–78.

    Article  Google Scholar 

  • Jin, F. F., D. Neelin, and M. Ghil, 1996: El Niño/southern oscillation and the annual cycle: Subharmonic frequency locking and aperiodicity. Physica( D), 98, 442–465.

    Article  Google Scholar 

  • Kushnir, Y., 1987: Retrograding wintertime lowfrequency disturbances over the north pacific ocean. J. Atmos. Sci., 44, 2727–2742.

    Article  Google Scholar 

  • Li, J., and S. Wang, 2008: Some mathematical and numerical issues in geophysical fluid dynamics and climate dynamics. Communications in Computational Physics, 3(4), 759–793.

    Google Scholar 

  • Ma, J., and J. Li, 2007: The reason for the strengthening of the boreal winter hadley circulation and its connection with enso. Progress in Natural Science, 17(11), 1327–1333.

    Google Scholar 

  • Ma, T., and S. Wang, 2005a: Bifurcation theory and applications. World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, Vol. 53, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, xiv+375pp.

    Google Scholar 

  • Ma, T., and S. Wang, 2005b: Geometric theory of incompressible flows with applications to fluid dynamics. Mathematical Surveys and Monographs, Vol. 119, American Mathematical Society, Providence, RI, x+234pp.

    Google Scholar 

  • Ma, T., and S. Wang, 2007a: Rayleigh-Bénard convection: dynamics and structure in the physical space. Communications in Mathematical Sciences, 5(3), 553–574.

    Google Scholar 

  • Ma, T., and S. Wang, 2007b: Stability and Bifurcation of Nonlinear Evolutions Equations. Science Press, 437pp.

  • Ma, T., and S. Wang, 2008a: Dynamic model and phase transitions for liquid helium. Journal of Mathematical Physics, 49(073304), 1–18.

    Google Scholar 

  • Ma, T., and S. Wang, 2008b: Dynamic phase transition theory in PVT systems. Indiana University Mathematics Journal, 57(6), 2861–2889.

    Article  Google Scholar 

  • Ma, T., and S. Wang, 2008c: Superfluidity of helium-3. Physica A: Statistical Mechanics and Its Applications, 387(24), 6013–6031.

    Article  Google Scholar 

  • Ma, T., and S. Wang, 2009a: Phase transition and separation for mixture of liquid he-3 and he-4. Lev Davidovich Landau and His Impact on Contemporary Theoretical Physics, Ammar Sakaji-Ignazio Licata, Eds., Horizons in World Physics, Vol. 264, 111–124.

  • Ma, T., and S. Wang, 2010a: Dynamic transition theory for thermohaline circulation. Physica(D), 239, 167–189.

    Google Scholar 

  • Ma, T., and S. Wang, 2010b: Tropical atmospheric circulations: Dynamic stability and transitions. Discrete and Continuous Dynamical Systems (A), 26(4), 1399–1417.

    Article  Google Scholar 

  • Mu, M., and W. Duan, 2003: A new approach to studying enso predictability: Conditional nonlinear optimal perturbation. Chinese Science Bulletin, 48(10), 1045–1047.

    Google Scholar 

  • Neelin, J. D., 1990a: A hybrid coupled general circulation model for El Niño studies. J. Atmos. Sci., 47, 674–693.

    Article  Google Scholar 

  • Neelin, J. D., 1990b: The slow sea surface temperature mode and the fast-wave limit: Analytic theory for tropical interannual oscillations and experiments in a hybrid coupled model. J. Atmos. Sci., 48, 584–606.

    Article  Google Scholar 

  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: Enso theory. J. Geophys. Res., 103, 14261–14290.

    Article  Google Scholar 

  • Philander, S. G. and A. Fedorov, 2003: Is El Niño sporadic or cyclic? Ann. Rev. Earth Planet. Sci., 31, 579–594.

    Article  Google Scholar 

  • Samelson, R. M., 2009: Time-periodic flows in geophysical and classical fluid dynamics. Handbook of Numerical Analysis, Special Volume on Computational Methods for the Ocean and the Atmosphere, R. Temam and J. Tribbia, Eds., Elsevier, New York. 761pp.

    Google Scholar 

  • Sardeshmukh, P. D., G. P. Compo, and C. Penland, 2000: Changes of probability associated with El Niño. J. Climate, 4268–4286.

  • Schneider, E. K., B. P. Kirtman, D. G. DeWitt, A. Rosati, L. Ji, and J. J. Tribbia, 2003: Retrospective enso forecasts: Sensitivity to atmospheric model and ocean resolution. Mon. Wea. Rev., 131(12), 3038–3060.

    Article  Google Scholar 

  • Schopf, P. S., and M. J. Suarez, 1987: Vacillations in a coupled ocean-atmosphere model. J. Atmos. Sci., 45, 549–566.

    Article  Google Scholar 

  • Zebiak, S. E., and M. A. Cane, 1987: A model el niosouthern oscillation. Mon. Wea. Rev., 115, 2262–2278.

    Article  Google Scholar 

  • Zhou, G., and Q. Zeng, 2001: Predictions of ENSO with a coupled GCM. Adv. Atmos. Sci., 18(4), 587–603.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouhong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, T., Wang, S. El Niño southern oscillation as sporadic oscillations between metastable states. Adv. Atmos. Sci. 28, 612–622 (2011). https://doi.org/10.1007/s00376-010-9089-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-010-9089-0

Key words

Navigation