Skip to main content
Log in

Evaluation of grid-point atmospheric model of IAP LASG version 2 (GAMIL2)

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The Grid-point Atmospheric Model of IAP LASG version 2 (GAMIL2) has been developed through upgrading the deep convection parameterization, cumulus cloud fraction and two-moment cloud microphysical scheme, as well as changing some of the large uncertain parameters. In this paper, its performance is evaluated, and the results suggest that there are some significant improvements in GAMIL2 compared to the previous version GAMIL1, for example, the components of the energy budget at the top of atmosphere (TOA) and surface; the geographic distribution of shortwave cloud radiative forcing (SWCF); the ratio of stratiform versus total rainfall; the response of atmospheric circulation to the tropical ocean; and the eastward propagation and spatiotemporal structures of the Madden Julian Oscillation (MJO). Furthermore, the indirect aerosols effect (IAE) is −0.94 W m−2, within the range of 0 to −2 W m−2 given by the IPCC 4th Assessment Report (2007). The influence of uncertain parameters on the MJO and radiation fluxes is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul-Razzak, H., and S. J. Ghan, 2000: A parameterization of aerosol activation 2. Multiple aerosol types, J. Geophys. Res., 105(D5), 6837–6844.

    Article  Google Scholar 

  • Cionni, I., and Coauthors, 2011: Ozone database in support of CMIP5 simulations: Results and corresponding radiative forcing. Atmos. Chem. Phys., 11, 11267–11292, doi: 10.5194/acp-11-11267-2011.

    Article  Google Scholar 

  • Collins, W. D., and Coauthors, 2003: Description of the NCAR community atmosphere model (CAM2). National Center for Atmospheric Research, Boulder, CO., 171pp.

    Google Scholar 

  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, NCAR, Boulder, CO., 210pp.

    Google Scholar 

  • Dong, L., L. J. Li, W. Y. Huang, Y. Wang, and B. Wang, 2012: Preliminary evaluation of the cloud fraction simulations by GAMIL2 using COSP. Atmos. Oceanic Sci. Lett., 5, 258–263.

    Google Scholar 

  • Fu, X., and B. Wang, 2009: Critical roles of the stratiform rainfall in sustaining the Madden-Julian oscillation: GCM Experiments, J. Climate, 22, 3939–3959.

    Article  Google Scholar 

  • Guo, Z., C. Q. Wu, T. J. Zhou, and T. W. Wu, 2011: A comparison of cloud radiative forcings simulated by LASG/IAP and BCC atmospheric general circulation models. Chinese J. Atmos. Sci., 35(4), 739–752. (in Chinese)

    Google Scholar 

  • Hack, J. J., 1994: Parameterization of moist convection in the national center for atmospheric research community climate model, J. Geophys. Res., 99(D3), 5541–5568.

    Article  Google Scholar 

  • Hodson, D. L. R., R. T. Sutton, C. Cassou, N. Keenlyside, Y. Okumura, and T. Zhou, 2010: Climate impacts of recent multidecadal changes in Atlantic Ocean sea surface temperature: A multimodel comparison. Climate Dyn., 34, 1041–1058.

    Article  Google Scholar 

  • Jackson, C. S., M. K. Sen, G. Huerta, Y. Deng, and K. P. Bowman, 2008: Error reduction and convergence in climate prediction. J. Climate, 21, 6698–6709.

    Article  Google Scholar 

  • Kiehl, J. T., and K. E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Amer. Meteor. Soc., 78, 197–208.

    Article  Google Scholar 

  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 1587–1606.

    Article  Google Scholar 

  • Kuang, X. Y., Y. C. Zhang, J. Liu, and L. L. Guo, 2009: A numerical study of the effect of anomalous surface heating in the Kuroshio current region in winter on the East Asian subtropical westerly jet. Chinese J. Atmos. Sci., 33(1), 81–89. (in Chinese)

    Google Scholar 

  • Kucharski, F., and Coauthors, 2009: The CLIVAR C20C project: skill of simulating Indian monsoon rainfall on interannual to decadal timescales. Does GHG forcing play a role? Climate Dyn., 33, 615–627.

    Article  Google Scholar 

  • Lean, J., cited 2009: Calculations of Solar Irradiance: Monthly means from 1882 to 2008, annual means from 1610 to 2008. [Available online at http://sparcsolaris.gfzpotsdam.de/Inputdata/Calculations ofSolarIrradiance.pdf.]

    Google Scholar 

  • Li, L. J., and B. Wang, 2010: Influences of two convective schemes on the radiative energy budget in GAMIL1.0. Acta Meteorologica Sinica, 24(3), 318–327.

    Google Scholar 

  • Li, L. J., B. Wang, and T. J. Zhou, 2007a: Contributions of natural and anthropogenic forcings to the summer cooling over eastern China: An AGCM study. Geophys. Res. Lett., 34, L18807, doi: 10.1029/2007GL030541.

    Article  Google Scholar 

  • Li, L. J., B. Wang, and T. J. Zhou, 2007b: Impacts of external forcing on the 20th century global warming. Chinese Science Bulletin, 52, 3148–3154.

    Article  Google Scholar 

  • Li, L. J., B. Wang, Y. Q. Wang, and H. Wan, 2007c: Improvements in climate simulation with modifications to the Tiedtke convective parameterization in the grid-point atmospheric model of IAP LASG (GAMIL). Adv. Atmos. Sci., 24, 323–335, doi: 10.1007/s00376-007-0323-3.

    Article  Google Scholar 

  • Li, L. J., Y. Q. Wang, B. Wang, and T.-J. Zhou, 2008: Sensitivity of the grid-point atmospheric model of IAP LASG (GAMIL1.1.0) climate simulations to cloud droplet effective radius and liquid water path. Adv. Atmos. Sci., 25(4), 529–540, doi: 10.1007/s00376-008-0529-z.

    Article  Google Scholar 

  • Li, L. J., X. Xie, B. Wang, and L. Dong, 2012: Evaluating the performances of GAMIL1.0 and GAMIL2.0 during TWP-ICE with CAPT. Atmos. Oceanic Sci. Lett., 5, 38–42.

    Google Scholar 

  • Li, L. J., and Coauthors, 2013: The flexible global oceanatmosphereland system model, grid-point version 2: FGOALS-g2. Adv. Atmos. Sci., doi: 10.1007/s00376-012-2140-6.

    Google Scholar 

  • Li, J., and L. Zhang, 2009: Wind onset and withdrawal of Asian summer monsoon and their simulated performance in AMIP models. Climate Dyn., 32(7–8), 935–968.

    Article  Google Scholar 

  • Lin, J. L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis. J. Climate, 20, 4497–4525, doi: http://dx.doi.org/10.1175/JCLI4272.1

    Article  Google Scholar 

  • Mao, J. Y., and L. J. Li, 2012: An assessment of MJO and tropical waves simulated by different versions of the GAMIL model. Atmos. Oceanic Sci. Lett., 5, 26–31.

    Google Scholar 

  • Morrison, H., and A. Gettelman, 2008: A new twomoment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21(15), 3642–3659.

    Article  Google Scholar 

  • Nenes, A., and J. H. Seinfeld, 2003: Parameterization of cloud droplet formation in global climate models. J. Geophys. Res., 108, 4415, doi: 10.1029/2002JD002911.

    Article  Google Scholar 

  • Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the Tropics. ECMWF Tech. Memo. 206, 41pp.

  • Rasch, P. J., and J. E. Kristjánsson, 1998: A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J. Climate, 11(7), 1587–1614.

    Article  Google Scholar 

  • Sanderson, B. M., 2011: A multi-model study of parametric uncertainty in predictions of climate response to rising greenhouse gas concentrations. J. Climate, 24, 1362–1377.

    Article  Google Scholar 

  • Scaife, A. A., and Coauthors, 2008: The CLIVAR C20C project: Selected 20th century climate events. Climate Dyn., 31, doi: 10.1007/s00382-008-0451-1.

  • Shi, X. J., B. Wang, X. H. Liu, M. H. Wang, L. J. Li, and L. Dong, 2010: Aerosol indirect effects on warm clouds in the grid-point atmospheric model of IAP LASG (GAMIL). Atmos. Oceanic Sci. Lett., 3, 237–241.

    Google Scholar 

  • Stainforth, D. A., and Coauthors, 2005: Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 433, 403–406.

    Article  Google Scholar 

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 779–1800.

    Article  Google Scholar 

  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311–324.

    Article  Google Scholar 

  • Wang, B. and Z. Z. Ji, 2006: New numerical methods and their applications in the atmopsheric science. science press, 208pp.

    Google Scholar 

  • Wang, B., H. Wan, Z. Z. Ji, X. Zhang, R. C. Yu., Y. Q. Yu, and H.-T. Liu, 2004: Design of a new dynamical core for global atmospheric models based on some efficient numerical methods. Science in China (Math.), 47, 4–21.

    Article  Google Scholar 

  • Wu, Z. W., and J. Li, 2008: Prediction of the Asian-Australian monsoon interannual variations with the grid-point atmospheric model of IAP LASG (GAMIL) Adv. Atmos. Sci., 25(3), 387–394, doi: 10.1007/s00376-008-0387-8.

    Article  Google Scholar 

  • Wu, Z. W. and J. P. Li, 2009: Seasonal prediction of the global precipitation annual modes with the gridpoint atmospheric model of IAP LASG. Acta Meteorologica Sinica, 23(4), 428–437.

    Google Scholar 

  • Xie, X., B. Wang, L.-J. Li, and L. Dong, 2012: MJO simulations by GAMIL1.0 and GAMIL2.0. Atmos. Oceanic Sci. Lett., 5, 48–54.

    Google Scholar 

  • Xu, K. M., and S. K. Krueger, 1991: Evaluation of cloudiness parameterizations using a cumulus ensemble model. Mon. Wea. Rev., 119, 342–367.

    Article  Google Scholar 

  • Yan, L., P. X. Wang, Y. Q. Yu, L. J. Li, and B. Wang, 2010: Potential predictability of sea surface temperature in a coupled ocean-atmosphere GCM. Adv. Atmos. Sci., 27(4), 921–936, doi: 10.1007/s00376-009-9062-y.

    Article  Google Scholar 

  • Yokohata, T., M. J. Webb, M. Collins, K. D. Williams, M. Yoshimori, J. C. Hargreaves, and J. D. Annan, 2010: Structural similarities and differences in climate responses to CO2 increase between two perturbed physics ensembles. J. Climate, 23, 1392–1410.

    Article  Google Scholar 

  • Yu, Y., and D. Z. Sun, 2009: Response of ENSO and the mean state of the tropical Pacific to extratropical cooling and warming: a study using the IAP coupled model. J. Climate, 22, 5902–5917.

    Article  Google Scholar 

  • Zhang, L., and J. Li, 2007: Seasonal rotation features of wind vectors and application to evaluate monsoon simulations in AMIP Models. Climate Dyn, doi: 10.1007/s00382-007-0327-9.

    Google Scholar 

  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model. Atmos.-Ocean, 33, 407–446.

    Article  Google Scholar 

  • Zhang, G. J., and M. Mu, 2005: Effects of modifications to the Zhang-McFarlane convection parameterization on the simulation of the tropical precipitation in the national center for atmospheric research community climate model, version 3. J. Geophys. Res., 110, D09109, doi: 10.1029/2004JD005617.

    Article  Google Scholar 

  • Zheng, W. P., and Y. Q. Yu, 2009: The Asian monsoon system of the middle Holocene simulated by a coupled GCM. Quaternary Science, 29, 1135–1145.

    Google Scholar 

  • Zou, L. W., T. J. Zhou, B. Wu, H. M. Chen, and L. J. Li, 2009: The interannual variability of summertime western pacific subtropical high hindcasted by GAMIL CliPAS experiments. Chinese J. Atmos. Sci., 33, 959–970. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Li  (李立娟).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Wang, B., Dong, L. et al. Evaluation of grid-point atmospheric model of IAP LASG version 2 (GAMIL2). Adv. Atmos. Sci. 30, 855–867 (2013). https://doi.org/10.1007/s00376-013-2157-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-2157-5

Key words

Navigation