Skip to main content

Advertisement

Log in

Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The influence of the large-scale atmospheric circulation at several tropospheric levels on wet season precipitation over 292 sites across the Mediterranean area is assessed. A statistical downscaling model is designed with an objective methodology based on empirical orthogonal functions and canonical correlation analysis (CCA) and tested by means of cross-validation. In all 30% of the total Mediterranean October to March precipitation variability can be accounted for by the combination of four large-scale geopotential height fields and sea level pressure. The Mediterranean sea surface temperatures seem to be less relevant to explain precipitation variability at interannual time scale. It is shown that interdecadal changes in the first CCA mode are related to variations in the North Atlantic Oscillation index and responsible for comparable time scale variations of the Mediterranean precipitation throughout the twentieth century. The analysis reveals that since the mid-nineteenth century precipitation steadily increased with a maximum in the 1960s and decreased since then. The second half of the twentieth century shows a general downward trend of 2.2 mm·month–1·decade–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  • Barnett TP, Preisendorfer RW (1987) Origins and levels of monthly and seasonal forecast skill for United States air temperature determined by canonical correlation analysis. Mon Weather Rev 115: 1825–1850

    Article  Google Scholar 

  • Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low frequency atmospheric circulation patterns. Mon Weather Rev 115: 1825–1850

    Article  Google Scholar 

  • Bartzokas A, Metaxas DA, Ganas IS (1994) Spatial and temporal sea-surface temperature covariances in the Mediterranean. Int J Climatol 14: 201–213

    Google Scholar 

  • Buffoni L, Maugeri M, Nanni T (1999) Precipitation in Italy 1833 to 1996. Theor Appl Climatol 63: 33–40

    Article  Google Scholar 

  • Buffoni L, Maugeri M, Nanni T (2000) Variation of temperature and precipitation in Italy from 1866 to 1995. Theor Appl Climatol 65: 165–174

    Article  Google Scholar 

  • Busuioc A, von Storch H (1996) Changes in the winter precipitation in Romania and its relation to the large scale circulation. Tellus 48A: 538–552

    Google Scholar 

  • Busuioc A, von Storch H, Schnur R (1999) Verification of GCM-generated regional seasonal precipitation for current climate and of statistical downscaling estimates under changing climate conditions. J Clim 12: 258–272

    Google Scholar 

  • Corte-Real J, Zhang X, Wang X (1995) Large-scale circulation regimes and surface climatic anomalies over the Mediterranean. Int J Climatol 15: 1135–1150

    Google Scholar 

  • Cubasch U, Meehl GA, Boer GJ, Stouffer RJ, Dix M, Noda A, Senior CA, Raper S, Yap KS (2001) Projections of future climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaoxu D (eds) Chapter 9 of climate change 2001; the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK, pp 99–181

  • Dünkeloh A, Jacobeit J (2003) Circulation dynamics of Mediterranean precipitation variability 1948–98. Int J Climatol 23: 1843–1866

    Article  Google Scholar 

  • Easterling DR, Karl TR, Gallo KP, Robinson TA, Trenberth KE, Dai AG (2000) Observed climate variability and change of relevance to the biosphere. J Geophys Res 105: 20,101–20,114

    Article  Google Scholar 

  • Edwards AL (1984) An introduction to linear regression and correlation, 2nd edn. Freeman WH, New York, pp 81–83

  • Eshel G (2002) Mediterranean climates. Isr J Earth Sci 51: 157–168

    Article  Google Scholar 

  • Eshel G, Farrell BF (2000) Mechanisms of Eastern Mediterranean rainfall variability. J Atmos Sci 57: 3219–3232

    Article  Google Scholar 

  • Eshel G, Cane MA, Farrell BF (2000) Forecasting Eastern Mediterranean drought. Mon Weather Rev 128: 3618–3630

    Article  Google Scholar 

  • Esteban-Parra MJ, Rodrigo FS, Castro-Diez Y (1998) Spatial and temporal patterns of precipitation in Spain for the period 1880–1992. Int J Climatol 14: 1557–1574

    Article  Google Scholar 

  • Fernández J, Saenz J, Zorita E (2003) Analysis of wintertime atmospheric moisture transport and its variability over Southern Europe in the NCEP-Reanalyses. Clim Res 23: 195–215

    Google Scholar 

  • Folland CK, Karl TP, Christy JR, Clarke RA, Gruza GV, Jouzel J, Mann ME, Oerlemans J, Salinger MJ, Wang SW (2001) Observed climate variability and change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaoxu D (eds) Chapter 2 of climate change 2001; the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge UK, pp 99–181

  • Fotiadi AK, Metaxas DA, Bartzokas A (1999) A statistical study of precipitation in northwest Greece. Int J Climatol 19: 1221–1232

    Article  Google Scholar 

  • Gibelin A-L, DéquéM (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Dyn 20: 327–339 DOI 10.1007/s00382-002-0277-1

    Google Scholar 

  • Gillett NP, Allen MR, McDonald RE, Senior CA, Shindell DT, Schmidt GA (2002) How linear is the Arctic Oscillation response to greenhouse gases? J Geophys Res 107 DOI:10.1029/2001JD000589

    Google Scholar 

  • Giorgi F (2002a) Variability and trends of sub-continental scale surface climate in the twentieth century. Part I: observations. Clim Dyn 18: 675–691 DOI 10.1007/s00382-001-0204-x

    Article  Google Scholar 

  • Giorgi F (2002b) Variability and trends of sub-continental scale surface climate in the twentieth century. Part II: AOGCM simulations. Clim Dyn 18: 693–708 DOI 10.1007/s00382-001-0205-9

    Article  Google Scholar 

  • Giorgi F, Francisco R (2000a) Uncertainties in regional climate change predictions. A regional analysis of ensemble simulations with the HADCM2 AOGCM. Clim Dyn 16: 169–182

    Google Scholar 

  • Giorgi F, Francisco R (2000b) Evaluating uncertainties in the prediction of regional climate change. Geophys Res Lett 27: 1295–1298

    Article  Google Scholar 

  • González-Rouco JF, Heyen H, Zorita E, Valero F (2000) Agreement between observed rainfall trends and climate change simulations in Southern Europe. J Clim 13: 3057–3065

    Article  Google Scholar 

  • González-Rouco JF, Jimenez JL, Quesada V, Valero F (2001) Quality control and homogenization of monthly precipitation data in the southwest of Europe. J Clim 14: 964–978

    Article  Google Scholar 

  • Gutowski WJ Jr, Chen Y, Ötles Z (1997) Atmospheric water vapor transport in NCEP-NCAR reanalyses: comparison with river discharge in the central United States. Bull Am Meteorol Soc 78: 1957–1969

    Article  Google Scholar 

  • Higgins RW, Mo KC, Schubert SD (1996) The moisture budget of the central United States as evaluated in the NCEP/NCAR and the NASA/DAO reanalyses. Mon Weather Rev 124: 939–963

    Article  Google Scholar 

  • Hoerling MP, Hurrell JW, Xu T, Bates GT, Phillips A (2004) Twentieth century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming. Clim Dyn (in press)

    Google Scholar 

  • Hulme M, Barrow EM, Arnell NW, Harrison PA, Johns TC, Downing TE (1999) Relative impacts of human-induced climate change and natural variability. Nature 397: 688–691

    Article  CAS  Google Scholar 

  • Hunt B, Gordon H (1988) The problem of naturally occurring drought. Clim Dyn 3: 19–33

    Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269: 676–679

    CAS  Google Scholar 

  • Hurrell JW, Hoerling MP, Phillips A, Xu T (2004) Twentieth century North Atlantic climate change. Part I: Assessing determinism. Clim Dyn (in press)

    Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Contribution of Working Group I to Third Assessment Report of the Intergovernmental Panel on Climate Change. Houghton, JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Cambridge University Press, Cambridge, UK and New York, NY, USA

    Google Scholar 

  • Jacobeit J (2000) Rezente Klimaentwicklung im Mittelmeerraum. Petermanns Geogr Mittl 144: 22–33

    Google Scholar 

  • Janowiak JE, Gruber A, Kondragunta CR, Livezey RE, Hufman GJ (1998) a comparison of the NCEP-NCAR reanalysis precipitation and the GPCP rain gauge-satellite combined dataset with observational error considerations. J Clim 11: 2960–2979

    Article  Google Scholar 

  • Jones PD, Jonsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and Southwest Iceland. Int J Climatol 17: 1433–1450

    Article  Google Scholar 

  • Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys 42. RG2002 DOI 10.1029/2003RG000143

  • Kadioğlu M (2000) Regional variability of seasonal precipitation over Turkey. Int J Climatol 20: 1743–1760

    Article  Google Scholar 

  • Kadioğlu M, Tulunay Y, Borhan Y (1999) Variability of Turkish precipitation compared to El Nio events. Geophys Res Lett 26: 1597–1600

    Article  Google Scholar 

  • Kalnay et al. (1996) The NCEP/NCAR 40-Year Reanalysis Project. Bull Am Meteorol Soc 77: 437–471

    Article  Google Scholar 

  • Karaca M, Deniz A, TayançM (2000) Cyclone track variability over Turkey in association with regional climate. Int J Climatol 20: 1225–1236

    Article  Google Scholar 

  • Kistler R et al. (2001) The NCEP-NCAR 50-year Reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82: 247–267

    Article  Google Scholar 

  • Knippertz P, Christoph M, Speth P (2002) Long-term precipitation variability in Morocco and the link to the large-scale circulation in recent and future climates. Meteorol Atmos Phys DOI 10.1007/s00703-002-0561-y

  • Kutiel H, Maheras P, Guika S (1996a) Circulation indices over the Mediterranean and Europe and their relationship with rainfall conditions across the Mediterranean. Theor Appl Climatol 54: 125–138

    Google Scholar 

  • Kutiel H, Maheras P, Guika S (1996b) Circulation and extreme rainfall conditions in the eastern Mediterranean during the last century. Int J Climatol 16: 73–92

    Article  Google Scholar 

  • Livezey RE, Smith TM (1999) Considerations for use of the Barnett and Preisendorfer (1987) algorithm for canonical correlation analysis of climate variations. J Clim 12: 303–305

    Google Scholar 

  • Maheras P (2000) Synoptic situations causing drought in the Mediterranean basin. In: Vogt JV, Somma F (eds) Drought and drought mitigation in Europe. Kluwer Academic, pp 91–102

  • Mariotti A, Struglia MV (2002) The hydrological cycle in the Mediterranean region and implications for the water budget of the Mediterranean Sea. J Clim 15: 1674–1690

    Article  Google Scholar 

  • Matulla C, Scheifinger H, Menzel A, Koch E (2003) Exploring two methods for statistical downscaling of Central European phenological time series. Int J Biometeorol 48:56–64 DOI 10.1007/s00484-003-0186-y

    Article  CAS  PubMed  Google Scholar 

  • Michaelsen J (1987) Cross-validation in statistical climate forecast models. J Clim Appl Meteor 26: 1589–1600

    Article  Google Scholar 

  • Mo KC, Higgins RW (1996) Large-scale atmospheric moisture transport as evaluated in the NCEP/NCAR and the NASA/DAO reanalyses. J Clim 9: 1531–1545

    Article  Google Scholar 

  • New MG, Hulme M, Jones PD (2000) Representing twentieth-century space time climate fields. Part II: development of a 1901–1996 mean monthly terrestrial climatology. J Clim 13: 2217–2238

    Article  Google Scholar 

  • New M, Todd M, Hulme M, Jones P (2001) Precipitation measurements and trends in the twentieth century. Int J Climatol 21: 1899–1922

    Article  Google Scholar 

  • Nicholls N, Gruza GV, Jouzel J, Karl TR, Ogallo LA, Parker DE (1996) Observed Climate variability and change. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) Chapter 3 of climate change 1995; the science of climate change, Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK, pp 133–192

  • North GR, Moeng FJ, Bell TL, Cahalan RF (1982) The latitude dependence of the variance of zonally averaged quantities. Mon Weather Rev 110: 319–326

    Article  Google Scholar 

  • Osborn TJ (2004) Simulating the winter North Atlantic Oscillation: the roles of internal variability and greenhouse gas forcing. Clim Dyn DOI 10.1007/s00382-004-0405-1

    Google Scholar 

  • Paeth H, Hense A, Glowienka-Hense R, Voss R, Cubasch U (1999) The North Atlantic Oscillation as an indicator for greenhouse gas induced regional climate change. Clim Dyn 15: 953–960

    Article  Google Scholar 

  • Peixoto JP, De Almeida M, Rosen RD, Salstein DA (1982) Atmospheric moisture transport and the water balance of the Mediterranean Sea. Water Resour Res 18: 83–90

    Google Scholar 

  • Peterson TC, Vose RS, Schmoyer R, Razuvaëv V (1998) Global historical climatology network (GHCN) quality control of monthly temperature data. Int J Climatol 18: 1169–1179

    Article  Google Scholar 

  • Piervitali E, Colacino M, Conte M (1998) Rainfall over the central-western Mediterranean Basin in the period 1951–1995. Part I: precipitation trends. Il Nuovo Cimento 21C: 331–344

    Google Scholar 

  • Quadrelli R, Pavan V, Molteni F (2001) Wintertime variability of Mediterranean precipitation and its links with large-scale circulation anomalies. Clim Dyn 17: 457–466

    Article  Google Scholar 

  • Rayner NA, Horton EB, Parker DE, Folland CK, Hackett RB (1996) Version 2.2 of the Global Sea-Ice and Sea Surface Temperature Data Set, 1903–1994. Climate Research Technical Note 74, unpublished document available from Hadley Centre

  • Reddaway JM, Bigg GR (1996) Climatic change over the Mediterranean and links to the more general atmospheric circulation. Int J Climatol 16: 651–661

    Article  Google Scholar 

  • Rimbu N, le Treut H, Janicot S, Boroneant C, Laurent C (2001) Decadal precipitation variability over Europe and its relation with surface atmospheric circulation and sea surface temperature. Q J R Meteorol Soc 127: 315–329

    Article  Google Scholar 

  • Rodrigo FS (2002) Changes in climate variability and seasonal rainfall extremes: a case study from San Fernando (Spain), 1821–2000. Theor Appl Climatol 72: 193–207

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25: 1297–1300

    Article  Google Scholar 

  • Tomozeiu R, Lazzeri M, Cacciamani C (1995) Precipitation fluctuations during the winter season from 1960 to 1995 over Emilia-Romagna, Italy. Theor Appl Climatol 72: 221–229

    Article  Google Scholar 

  • Trenberth K, Paolino DA (1980) The Northern Hemisphere sea-level pressure data set: trends, errors and discontinuities. Mon Weather Rev 108: 855–872

    Article  Google Scholar 

  • Trigo IF, Davies TD, Bigg GR (1999) Objective climatology of cyclones in the Mediterranean Region. J clim 12: 1685–1696

    Article  Google Scholar 

  • Trigo IF, Davies TD, Bigg GR (2000) Decline in Mediterranean rainfall caused by weakening of Mediterranean cyclones. Geophys Res Lett 27: 2913–2916

    Article  Google Scholar 

  • TürkeşM (1998) Influence of geopotential heights, cyclone frequency and southern oscillation on rainfall variations in Turkey. Int J Climatol 18: 649–680

    Article  Google Scholar 

  • von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, UK

  • von Storch H, Zorita E, Cubasch U (1993) Downscaling of global climate change estimates to regional scales: an application to Iberian rainfall in wintertime. J Clim 6: 1161–1171

    Article  Google Scholar 

  • Vose RS, Schmoyer RL, Steurer PM, Peterson TC, Heim R, Karl TR, Eischeid J (1992) The Global Historical Climatology Network: long-term monthly temperature, precipitation, sea level pressure, and station pressure data. ORNL/CDIAC-53, NDP- 041, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

    Google Scholar 

  • Ward NN (1998) Diagnosis and short-lead predictions of summer rainfall in tropical North Africa at interannual and multidecadal time scales. J clim 11: 3167–3191

    Article  Google Scholar 

  • Widmann M, Bretherton CS (2000) Validation of mesoscale precipitation in the NCEP reanalysis using a new grid-cell dataset for the northwestern United States. J Clim 13: 1936–1950

    Article  Google Scholar 

  • Widmann M, Bretherton CS, SalathéEP Jr (2003) Statistical precipitation downscaling over the northwestern United States using numerically simulated precipitation as a predictor. J Clim 16: 799–816

    Article  Google Scholar 

  • Wilks DS (1995) Statistical Methods in the Atmospheric Sciences: an Introduction. In: Dmowska R, Holton JR (eds) International Geophysics Series, 59. Academic Press

  • WMO (1986) Guidelines on the quality control of surface climatological data/prepared by Abbott PF (UK) as Rapporteur in the WMO Commission for Climatology. Geneva: WCP, (WCP-85). iv, appendices

  • Xoplaki E (2002) Climate variability over the Mediterranean. PhD thesis, University of Bern, Switzerland ([http://sinus.unibe.ch/klimet/docs/phd_xoplaki.pdf])

  • Xoplaki E, González-Rouco JF, Luterbacher J, Wanner H (2003a) Mediterranean summer air temperature variability and its connection to the large-scale atmospheric circulation and SSTs. Clim Dyn 20: 723–739 DOI 10.1007/s00382-003-0304-x

    Google Scholar 

  • Xoplaki E, González-Rouco FJ, Gyalistras D, Luterbacher J, Rickli R, Wanner H (2003b) Interannual summer air temperature variability over Greece and its connection to the large-scale atmospheric circulation and Mediterranean SSTs 1950–1999. Clim Dyn 20: 523–536 DOI 10.1007/s00382-002-0291-3

    Google Scholar 

  • Xoplaki E, Luterbacher J, Burkard R, Patrikas I, Maheras P (2000) Connection between the large-scale 500 hPa geopotential height fields and precipitation over Greece during wintertime. Clim Res 14: 129–146

    Google Scholar 

  • Xu JS (1993) The joint modes of the coupled atmosphere-ocean system observed from 1967 to 1987. J Clim 6: 816–838

    Article  Google Scholar 

  • Zorita E, González-Rouco JF (2002) Are temperature sensitive proxies adequate for North Atlantic Oscillation reconstructions? Geophys Res Lett 29 DOI 10.1029/2002GL015404)

  • Zorita E, von Storch H (1999) The analog method as a simple statistical downscaling technique: comparison with more complicated methods. J Clim 12: 2474–2489

    Article  Google Scholar 

  • Zorita E, Kharin V, von Storch H (1992) The atmospheric circulation and sea surface temperature in the North Atlantic area in winter: their interaction and relevance for Iberian precipitation. J Clim 5: 1097–1108

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their thanks to the following institutions or persons, who kindly provided their valuable instrumental time series, through which the climate analysis for the Mediterranean region was made possible (in alphabetical order of the countries). Albania: Prof. Sanxhaku, Academy of Sciences, Hydrometeorological Institute, Tirana; Algeria: Dr. M. Kadi, Office National de la Météorologie Climate Center, Dar el Beida, Alger; Austria: Drs. I. Auer, R. Böhm and W. Schöner, Zentralanstalt für Meteorologie und Geodynamik (ZAMG), HOHE WARTE 38, Vienna; Bosnia-Herzegovina: Dr. E. Sarac, Federal Meteorological Institute, Sarajevo; Bulgaria: National Institute of Meteorology and Hydrology, Bulgarian Academy of Sciences, Sofia and D. Lister, Climatic Research Unit, University of East Anglia, Norwich; Croatia: Dr. M. Gajic-Capka, Meteorological and Hydrological Service of Croatia, Department for Meteorological Research, Zagreb; Cyprus: Dr. L. Hadjioannou, Ministry of Agriculture, Natural Resources and Environment, Meteorological Service, Nicosia; Greece: Hellenic National Meteorological Service, Hellinikon, Athens; Israel: Dr. A. Porat, Ministry of Transport, Israel Meteorological Service; Bet Dagan; Italy: Colonel Dr. M. Capaldo, Aeronautica Militare, Centro Nazionale di Meteorologia e Climatologia Aeronautica Aeroporto Pratica di Mare, Pomezia; Jordan: Dr. H. AL Sha’er, The Hashimite Kingdom of Jordan, Meteorological Department Climate Division Amman Civil Airport, Amman; Lebanon: Dr. A. Bejjani, Republic of Lebanon, Ministry of Transport, Meteorological Services, International Airport of Beyrouth, Beyrouth; Libya: Dr. K. Elfadli, Libyan Meteorological Department, Climatological and Agrometeorological Section, Tripoli; Moldavia: Dr. L. Fisher, Hidrometeo Service (Chimet), Chisinau; Romania: Dr. A. Busuioc, National Institute of Meteorology and Hydrology, Bucharest; Skopje: Dr. N. Aleksovska, Hydrometeorological Institute of the FYR Macedonia, Meteorological and Climatological division, Skopje; Slovenia: Dres. T. Ovsenik-Jeglié, J. Miklavçiç and B. Zupani, Hydrometeorological Institute of Slovenia, Ministry of the environment and Physical Planning, Ljubliana; Spain: Universidad Computense de Madrid, Madrid; Switzerland: Swiss Meteorological Office, (SMA MeteoSchweiz), Zurich Tunisia: Dr. M. Ketata and Prof. H. Hajji, République tunesienne, Ministére de Transport, Institute National de la Météorologique, Tunis-Carthage. For Egypt, France, Hungary, Malta, Morocco, Portugal, Serbia, Syria and Turkey the data have been obtained from the GHCN (Global Historical Climatology Network) version 2b and/or where kindly provided by the German Meterological Service (DWD), Geschäftsfeld Seeschifffahrt and David Lister, Climatic Research Unit, University of East Anglia, Norwich, UK. Tommaso Abrate, Department of Hydrology and Water Resources, WMO, Geneva, Switzerland, provided us with addresses and relevant information on how to contact the responsible persons and institutions from the different countries. We also thank NCEP/NCAR for providing their reanalysis data. We are indebted to the British Meterological Office for the preparation of the gridded SST data. Dr. Elena Xoplaki was partially supported by Fifth Framework Programme of the European Union (project SOAP); Dr. J. Fidel González-Rouco was partially funded by project REN-2000-0786-cli and REN-2002-04584-C04-01-CLI; Dr. Jürg Luterbacher was supported by the Swiss Science Foundation (NCCR Climate). The authors wish to thank the Marchese Francesco Medici del Vascello Foundation for financial support. We thank Paul Della-Marta for proofreading the English text. The authors thank Dr. Gidon Eshel and an anonymous reviewer for their constructive comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Xoplaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xoplaki, E., González-Rouco, J.F., Luterbacher, J. et al. Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Climate Dynamics 23, 63–78 (2004). https://doi.org/10.1007/s00382-004-0422-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-004-0422-0

Keywords

Navigation