Skip to main content
Log in

Triggering of El Niño by westerly wind events in a coupled general circulation model

  • Original Articles
  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Two ten-members ensemble experiments using a coupled ocean-atmosphere general circulation model are performed to study the dynamical response to a strong westerly wind event (WWE) when the tropical Pacific has initial conditions favourable to the development of a warm event. In the reference ensemble (CREF), no wind perturbation is introduced, whereas a strong westerly wind event anomaly is introduced in boreal winter over the western Pacific in the perturbed ensemble (CWWE). Our results demonstrate that an intense WWE is capable of establishing the conditions under which a strong El Niño event can occur. First, it generates a strong downwelling Kelvin wave that generates a positive sea surface temperature (SST) anomaly in the central-eastern Pacific amplified through a coupled ocean-atmosphere interaction. This anomaly can be as large as 2.5°C 60 days after the WWE. Secondly, this WWE also initiates an eastward displacement of the warm-pool that promotes the occurrence of subsequent WWEs in the following months. These events reinforce the initial warming through the generation of additional Kelvin waves and generate intense surface jets at the eastern edge of the warm-pool that act to further shift warm waters eastward. The use of a ten-members ensemble however reveals substantial differences in the coupled response to a WWE. Whereas four members of CWWE ensemble develop into intense El Niño warming as described above, four others display a moderate warming and two remains in neutral conditions. This diversity between the members appears to be due to the internal atmospheric variability during and following the inserted WWE. In the four moderate warm cases, the warm-pool is initially shifted eastward following the inserted WWE, but the subsequent weak WWE activity (when compared to the strong warming cases) prevents to further shift the warm-pool eastwards. The seasonal strengthening of trade winds in June–July can therefore act to shift warm waters back into the western Pacific, reducing the central-eastern Pacific warming. This strong sensitivity of the coupled response to WWEs may therefore limit the predictability of El Niño events, as the high frequency wind variability over the warm pool region remains largely unpredictable even at short time lead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Belamari S, Redelsperger J-L, Pontaud M (2003) Dynamic role of a westerly wind burst in triggering an equatorial Pacific warm event. J Climate 16:1869–1890

    Article  Google Scholar 

  • Bentamy A, Quilfen Y, Gohin F, Grima N, Lenaour M, Servain J (1996) Determination and validation of average wind fields from ERS-1 scatterometer measurements. Global Atmosphere Ocean Syst 4:1–29

    Google Scholar 

  • Blanke B, Delecluse P (1993) Variability of the tropical Atlantic ocean simulated by a general circulation model with two different mixed layer physics. J Phys Oceanogr 23:1363–1388

    Article  Google Scholar 

  • Blanke B, Neelin JD, Gutzler D (1997) Estimating the effect of stochasting wind stress forcing on ENSO irregularity. J Climate 10:1473–1486

    Article  Google Scholar 

  • Boulanger J-P, Menkes C (1999) Long equatorial wave reflection in the Pacific Ocean from TOPEX/POSEIDON data during the 1992–1998 period. Clim Dyn 15:205–225

    Article  Google Scholar 

  • Boulanger J-P, Durand E, Duvel J-P, Menkes C, Delecluse P, Immbard M, Lengaigne M, Madec G, Masson S (2001) Role of non-linear oceanic processes in the response to westerly wind events: new implications for the 1997 El Niño onset. Geophys Res Lett 28:1603–1606. DOI: 10.1029/2000GL012364

    Article  Google Scholar 

  • Boulanger J-P, Menkes C, Lengaigne M (2004) Role of high- and low-frequency winds and wave reflection in the onset, growth and termination of the 1997/98 El Niño. Clim Dyn 22:267–280. DOI: 10.1007/s00382-003-0383-8

    Article  Google Scholar 

  • Braconnot P, Joussaume S, Marti O, de Noblet N (1999) Synergistic feedback from ocean and vegetation of the African monsoon response to mid-Holocene insolation. Geophys Res Lett 26:2481–2484. DOI: 10.1029/1999GL006047

    Article  Google Scholar 

  • Collins M (2002) Climate Predictability on interannual to decadal time scales: the initial value problem. Clim Dyn 19:671–692

    Article  Google Scholar 

  • Cronin MF, McPhaden MJ (1997) The upper ocean heat balance in the western equatorial Pacific warm pool during September–December 1992. J Geophys Res 102:8533–8553

    Article  Google Scholar 

  • Fedorov AV (2002) The response of the coupled tropical ocean-atmosphere to westerly wind bursts. Q J R Meteor Soc 128:1–23

    Article  Google Scholar 

  • Fedorov AV, Harper SL, Philander SG, Winter B, Wittenberg A (2003) How predictable is El Niño? Bull Am Meteorol Soc 84:911–919

    Article  Google Scholar 

  • Friedlingstein P, Bopp L, Ciais P, Dufresne J-L, Fairhead L, LeTreut H, Monfray P, Orr J (2001) Positive feedback between future climate change and the carbon cycle. Geophys Res Lett 28:1543–1546

    Article  CAS  Google Scholar 

  • Giese BS, Harrison DE (1991) Eastern equatorial Pacific response to three composite westerly wind types. J Geophys Res 96:3239–3248

    Google Scholar 

  • Gregory D, Rowntree PR (1990) A mass flux convection scheme with the representation of cloud ensemble characteristics and stability dependent closure. Mon Wea Rev 118:1483–1506

    Article  Google Scholar 

  • Gregory D, Kershaw R, Inness PM (1997) Parametrisation of momentum transport by convection II: tests in single column and general circulation models. Q J R Meteor Soc 123:1153–1183

    Article  Google Scholar 

  • Guilyardi E, Madec G, Terray L (2001) The role of lateral ocean physics in the upper ocean thermal balance of a coupled ocean-atmosphere GCM. Clim Dyn 13:149–165

    Article  Google Scholar 

  • Guilyardi E, Delecluse P, Gualdi S, Navarra A (2003) Mechanisms for ENSO phase change in a coupled GCM. J Climate 16:1141–1158

    Article  Google Scholar 

  • Guilyardi E, Gualdi S, Slingo J, Navarra A, Delecluse P, Cole J, Madec G, Roberts M, Latif M, Terray L (2004) Representing El Niño in present-day coupled ocean-atmosphere GCMs: the dominant role of the atmosphere. J Clim (in press)

  • Harrison DE, Craig A (1993) Ocean model studies of upper ocean variability at (0°N, 160°W) during the 1982–1983 ENSO: local and remote forcing. J Phys Oceanogr 23:427–451

    Article  Google Scholar 

  • Harrison DE, Giese BS (1989) Comment on “The response of the equatorial Pacific Ocean to a westerly wind burst in May 1986” by M. J. McPhaden et al. J Geophys Res 94:5024–5026

    Google Scholar 

  • Harrison DE, Vecchi GA (1997) Westerly wind events in the tropical Pacific, 1986–1995. J Climate 10:3131–3156

    Article  Google Scholar 

  • Harrison DE, Vecchi GA, Weisberg RH (2000) Eastward surface jets in the central equatorial Pacific, November 1991–March 1992. J Mar Res 58:735–754

    Article  Google Scholar 

  • Hendon HH, Zhang C, Glick JD (1999) Interannual variability of the Madden-Julian oscillation during austral summer. J Climate 12:2358–2550

    Article  Google Scholar 

  • Inness PM, Slingo JM, Woolnough SJ, Neale RB, Pope VD (2001) Organization of tropical convection in a GCM with varying vertical resolution: implications for the simulation of the Madden-Julian oscillation. Clim Dyn 17:777–793

    Article  Google Scholar 

  • Inness P, Slingo JM, Guilyardi E, Cole J (2003) Simulation of the Madden-Julian oscillation in a coupled general circulation model II: the role of the basic state. J Climate 16:365–382

    Article  Google Scholar 

  • Kessler WS (2002) Is ENSO a cycle or a series of events?. Geophys Res Lett 29:DOI 10.1029/2002GL015924

    Article  Google Scholar 

  • Kessler WS, Kleeman R (2000) Rectification of the Madden-Jullian oscillation into the ENSO cycle. J Climate 13:3560–3575

    Article  Google Scholar 

  • Kessler WS, McPhaden MJ (1995) Oceanic equatorial waves and the 1991–1993 El Niño. J Climate 8:1757–1774

    Article  Google Scholar 

  • Kleeman R, Moore AM (1997) A theory the limitation of ENSO predictability due to stochastic atmospheric transients. J Atmos Sci 54:753–767

    Article  Google Scholar 

  • Knutson TR, Manabe S, Gu DF (1997) Simulated ENSO in a global coupled ocean-atmosphere model: multidecadal amplitude modulation and CO2 sensitivity. J Climate 10:138–161

    Article  Google Scholar 

  • Larkin NK, Harrison DE (2002) ENSO warm (El Niño) and cold (La Niña) event life cycles: ocean surface anomaly patterns, their symmetries, asymmetries and implications. J Climate 15:1118–1140

    Article  Google Scholar 

  • Latif M, Biercamp J, von Storch H (1988) The response of a coupled ocean-atmosphere general circulation model to wind bursts. J Atmos Sci 45:964–979

    Article  Google Scholar 

  • Lengaigne M, Boulanger J-P, Menkes C, Masson S, Madec G, Delecluse P (2002) Ocean response to the march 1997 westerly wind event. J Geophys Res 107:DOI 1029/2001JC000841

    Article  Google Scholar 

  • Lengaigne M, Boulanger J-P, Menkes C, Madec G, Delecluse P, Guilyardi E, Slingo JM (2003a) The march 1997 westerly wind event and the onset of the 1997/98 El Niño: understanding the atmospheric response. J Climate 16:3330–22243

    Article  Google Scholar 

  • Lengaigne M, Madec G, Menkes C, Alory G (2003b) The impact of isopycnal mixing on the tropical ocean circulation. J Geophys Res 108:3345. DOI 10.1029/2002JC001704

    Article  Google Scholar 

  • Lengaigne M, Boulanger JP, Menkes C, Delecluse P, Slingo J (2004) Westerly wind events in the tropical Pacific and their influence on coupled ocean-atmosphere system: a review, in Ocean-Atmosphere Interaction and Climate Variability. AGU Geophys Monogr (in press)

  • Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing Longwave radiation dataset. Bull Am Meteor Soc 77:1275–1277

    Google Scholar 

  • Madden RA, Julian PR (1994) Observations of the 40–50-day tropical oscillation: a review. Mon Wea Rev 122:814–837

    Article  Google Scholar 

  • Madec G, Delecluse P, Imbard M, Lévy C (1998) OPA 8.1 Ocean general circulation model reference manual. Note du Pôle de modélisation, Institut Pierre-Simon Laplace. No. 11, pp 91

  • Maes C (2000) Salinity variability in the equatorial Pacific Ocean during the 1993–98 period. Geophys Res Lett 27:1659–1662

    Article  Google Scholar 

  • Maes C, Picaut J, Belamari S (2002) Salinity barrier layer and onset of El Niño in a Pacific coupled model. Geophys Res Lett 29:DOI 10.1029/2002/GL016029

    Article  Google Scholar 

  • Mantua NJ, Battisti DS (1994) Evidence for the delayed oscillator mechanism for ENSO: the observed “oceanic” Kelvin mode in the far western Pacific. J Phys Oceanogr 24:691–699

    Article  Google Scholar 

  • McPhaden MJ et al (1998) The tropical ocean-global atmosphere observing system. J Geophys Res 103:14169–14240

    Article  Google Scholar 

  • McPhaden MJ (2002) Mixed layer temperature balance on intraseasonal time scales in the equatorial Pacific Ocean. J Climate 15:2632–2647

    Article  Google Scholar 

  • McPhaden MJ, Yu X (1999) Equatorial waves and the 1997–98 El Niño. Geophys Res Lett 26:2961–2964

    Article  Google Scholar 

  • McPhaden MJ, Freitag HP, Hayes SP, Taft BA (1988) The response of the equatorial Pacific ocean to westerly wind burst in May 1986. J Geophys Res 93:10589–10603

    Google Scholar 

  • Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial Pacific and their relationship to El Nino and La Nina. J Clim 13:3551–3559

    Article  Google Scholar 

  • Moore AM, Kleeman R (2000) Stochastic forcing of ENSO by intraseasonal oscillation. J Clim 12:1199–1220

    Article  Google Scholar 

  • Neelin JD, Battisti DS, Hirst AC, Jin FF, Wakata Y, Yamagata T, Zebiak SE (1998) ENSO theory. J Geophys Res 103:14261–14290

    Article  Google Scholar 

  • Penland C, Sadeshmukh PD (1995) The optical growth of tropical sea surface temperature anomalies. J Climate 8:1999–2024

    Article  Google Scholar 

  • Perigaud CM, Cassou C (2000) Importance of oceanic decadal trends and westerly wind bursts for forecasting El Niño. Geophys Res Lett 27:389–392

    Article  Google Scholar 

  • Picaut J, Ioualalen M, Menkes C, Delcroix T, McPhaden MJ (1996) Mechanism of the zonal displacements of the Pacific warm pool: implications for ENSO. Science 274:1486–1489

    Article  CAS  PubMed  Google Scholar 

  • Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parametrisations in the Hadley Centre climate model-HadAM3. Climate Dyn 16:123–146

    Article  Google Scholar 

  • Reynolds RW, Smith TM (1994) Improved global sea surface temperature analyses using optimum interpolation. J Climate 7:1195–1202

    Article  Google Scholar 

  • Roullet G, Madec G (2000) Salt conservation, free surface and varying volume: a new formulation for Ocean GCMs. J Geophys Res 105:23927–23942

    Article  Google Scholar 

  • Schneider EK, Zhu Z, Giese BS, Huang B, Kirtman BP, Shukla J, Carton JA (1997) Annual cycle and ENSO in a coupled ocean-atmosphere general circulation model. Mon Wea Rev 125:680–702

    Article  Google Scholar 

  • Slingo JM, Rowell DP, Sperber KR, Nortley F (1999) On the predictability of the interannual behaviour of the Madden-Julian oscillation and its relationship with El Niño. Q J R Meteor Soc 125:583–609

    Article  Google Scholar 

  • Spencer H, Slingo JM (2003) The simulation of peak and delayed ENSO teleconnections. J Climate 16:1757–1774

    Article  Google Scholar 

  • Syu H-H, Neelin JD (2000) ENSO in a hybrid coupled model. Part I: sensitivity to physical parameterizations. Clim Dyn 16:19–34

    Article  Google Scholar 

  • Thompson CJ, Battisti DS (2001) A linear stochastic dynamical model of ENSO. Part II: Analysis. J Climate 14:445–466

    Article  Google Scholar 

  • Valke S, Terray L, Piacentini A (2000) The OASIS coupled user guide version 2.4, Technical Report TR/ CMGC/00-10, CERFACS

  • Vecchi GA, Harrison DE (2000) Tropical pacific sea surface temperature anomalies, El Niño, and equatorial westerly wind events. J Climate 13:1814–1830

    Article  Google Scholar 

  • Vialard J, Delecluse P (1998) An OGCM study for the TOGA decade. Part II: barrier-layer formation and variability. J Phys Oceanogr 28:1089–1106

    Article  Google Scholar 

  • Vialard J, Menkes C, Boulanger J-P, Delecluse P, Guilyardi E, McPhadenet MJ, Madec G (2001) Oceanic mechanisms driving the SST during the 1997–1998 El Niño. J Phys Oceanogr 31:1649–1675

    Article  Google Scholar 

  • Wyrtki K (1975) El Niño—the dynamical response of the equatorial Pacific Ocean to atmospheric forcing. J Phys Oceanogr 5:572–584

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Amer Meteor Soc 78:2539–2558

    Article  Google Scholar 

  • Yu L, Rienecker MM (1998) Evidence of an extratropical atmospheric influence during the onset of the 1997–8 El Niño. Geophys Res Lett 25:3537–3540

    Article  Google Scholar 

  • Zebiak SE (1989) On the 30–60 day oscillation and the prediction of El Niño. J Climate 2:1381–1387

    Article  Google Scholar 

  • Zhang RH, Rothstein LM (2000) Role of off-equatorial subsurface anomalies in initiating the 1991–1992 El Niño as revealed by the NCEP ocean reanalysis data. J Geophys Res 105:6327–6339

    Article  Google Scholar 

Download references

Acknowledgments

The comments of the anonymous reviewers led to significant improvements in the manuscript. The authors are also grateful to Gurvan Madec and the OPA team, who developed the ocean model, and to the Hadley Center, who developed the atmospheric model. Matthieu Lengaigne gratefully acknowledge Bertrand Duchiron for its computation of the observational data and the comments of M. J. McPhaden and W. S. Kessler on an earlier version of the manuscript. This work was supported by the Programme National d’Etude du Climat (PNEDC). Computations were carried out at CSAR, Manchester and at the IDRIS/CNRS, Paris.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Lengaigne.

Appendix 1

Appendix 1

1.1 The Mann–Whitney test

The Mann–Whitney test is a non-parametric procedure, which is powerful to test the hypothesis that two sample populations (X and Y) have the same mean of distribution against the hypothesis that they differ. The test is derived by examining the probability distribution of a linear combination of the ranks of the population under the null hypothesis that all the values are sampled from the same continuous distribution.

The procedure ranks the population’s values from smallest to largest, assigning the rank 1 to the smallest observation, 2 to the next largest, and so on up to rank n, the number of elements in the two populations. Then, the Mann–Whitney statistics for X and Y are defined as follows

$$ \begin{aligned} & U(X) = n_x n_y + n_x (n_x + 1)/2 - W_x \\ & U(Y) = n_x n_y + n_y (n_y + 1)/2 - W_y \\ \end{aligned} $$

where n x and n y are the number of elements in X and Y, respectively, and W x and W y are the rank sums for X and Y. The test statistic Z, which closely follows a normal distribution for sample sizes exceeding ten elements, is defined as follows

$$ Z = \frac{{U{\left( x \right)} - (n_{x} n_{y} )/2}} {{{\sqrt {(n_{x} n_{y} (n + 1))/12} }}} $$

When this probability level is sufficiently small, we reject the null hypothesis and conclude that the two sample populations do not come from the same distribution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lengaigne, M., Guilyardi, E., Boulanger, JP. et al. Triggering of El Niño by westerly wind events in a coupled general circulation model. Climate Dynamics 23, 601–620 (2004). https://doi.org/10.1007/s00382-004-0457-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-004-0457-2

Keywords

Navigation