Skip to main content

Advertisement

Log in

Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Regional climate change projections for the last half of the twenty-first century have been produced for South America, as part of the CREAS (Cenarios REgionalizados de Clima Futuro da America do Sul) regional project. Three regional climate models RCMs (Eta CCS, RegCM3 and HadRM3P) were nested within the HadAM3P global model. The simulations cover a 30-year period representing present climate (1961–1990) and projections for the IPCC A2 high emission scenario for 2071–2100. The focus was on the changes in the mean circulation and surface variables, in particular, surface air temperature and precipitation. There is a consistent pattern of changes in circulation, rainfall and temperatures as depicted by the three models. The HadRM3P shows intensification and a more southward position of the subtropical Pacific high, while a pattern of intensification/weakening during summer/winter is projected by the Eta CCS/RegCM3. There is a tendency for a weakening of the subtropical westerly jet from the Eta CCS and HadRM3P, consistent with other studies. There are indications that regions such of Northeast Brazil and central-eastern and southern Amazonia may experience rainfall deficiency in the future, while the Northwest coast of Peru-Ecuador and northern Argentina may experience rainfall excesses in a warmer future, and these changes may vary with the seasons. The three models show warming in the A2 scenario stronger in the tropical region, especially in the 5°N–15°S band, both in summer and especially in winter, reaching up to 6–8°C warmer than in the present. In southern South America, the warming in summer varies between 2 and 4°C and in winter between 3 and 5°C in the same region from the 3 models. These changes are consistent with changes in low level circulation from the models, and they are comparable with changes in rainfall and temperature extremes reported elsewhere. In summary, some aspects of projected future climate change are quite robust across this set of model runs for some regions, as the Northwest coast of Peru-Ecuador, northern Argentina, Eastern Amazonia and Northeast Brazil, whereas for other regions they are less robust as in Pantanal region of West Central and southeastern Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alves L, Marengo JA (2009) Assessment of regional seasonal predictability using the PRECIS regional climate modeling system over South America. Theor Appl Climatol (in press)

  • Beniston M, Stephenson D, Christensen O, Ferro C, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95. doi:10.1007/s10584-006-9226-z

    Article  Google Scholar 

  • Betts AK, Miller MT (1986) A new convective adjustment scheme. Part II: single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Q J R Meteorol Soc 112:693–703. doi:10.1002/qj.49711247308

    Google Scholar 

  • Black TL (1994) The new NMC mesoscale Eta model: description and forecast example. Weather Forecas 9:265–278. doi:10.1175/1520-0434

    Article  Google Scholar 

  • Boulanger J-P, Martinez F, Segura EC (2006) Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 1: temperature mean state and seasonal cycle in South America. Clim Dyn 27:233–259. doi:10.1007/s00382-006-0134-8

    Article  Google Scholar 

  • Boulanger J-P, Martinez F, Segura EC (2007) Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 2: precipitation mean state and seasonal cycle in South America. Clim Dyn 28:255–271. doi:10.1007/s00382-006-0182-0

    Article  Google Scholar 

  • Cabré MF, Solman S, Nuñez M (2008) Creating regional climate change scenarios over southern South America for the 2020s and 2050s using the pattern scaling technique: validity and limitations. Clim Change (in press)

  • Cavalcanti IF, Camilloni I, Ambrizzi T (2006) Escenarios Climáticos Regionales. In: Barros V, Clarke R, Silva Dias P (eds) El Cambio Climatico en la Cuenca del Plata. CONICET, Buenos Aires

  • Chen FK, Janjic Z, Mitchel K (1997) Impact of the atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Boundary Layer Meteorol 85:391–421. doi:10.1023/A:1000531001463

    Article  Google Scholar 

  • Christensen JH, Christensen OB (2003) Climate modeling: severe summertime flooding in Europe. Nature 421:805–806. doi:10.1038/421805a

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007a) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Chap 11, contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK

  • Christensen JH, Carter TR, Rummukainen M, Amanatidis G (2007b) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Change 81:1–6. doi:10.1007/s10584-006-9211-6

    Article  Google Scholar 

  • da Rocha RP, Morales CA, Cuadra SV, Ambrizzi T (2009) Precipitation diurnal cycle and summer climatology assessment over South America: an evaluation of Regional Climate Model version 3 simulations. J Geophys Res 114:D10108. doi:10.1029/2008JD010212

    Article  Google Scholar 

  • Déqué M, Jones RG, Wild M, Giorgi F, Christensen JH, Hassell DC, Vidale PL, Rockel B, Jacob D, Kjellström E, de Castro M, Kucharski F, van den Hurk B (2005) Global high resolution versus Limited Area Model climate change projections over Europe: quantifying confidence level from PRUDENCE results. Clim Dyn 25:653–670. doi:10.1007/s00382-005-0052-1

    Article  Google Scholar 

  • Diaz-Nieto J, Wilby RL (2005) A comparison of statistical downscaling and climate change factor methods: Impacts on low flows in the River Thames, United Kingdom. Clim Change 69:245–268. doi:10.1007/s10584-005-1157-6

    Article  Google Scholar 

  • Dickinson RE, Errico RM, Giorgi F, Bates GT (1989) A regional climate model for the western United States. Clim Change 15:383–422. doi:10.1007/BF00240465

    Google Scholar 

  • Fels SB, Schwartzkopf MD (1975) The simplified exchange approximation: a new method for radiative transfer calculations. J Atmos Sci 32:1466–1475. doi:10.1175/1520-0469

    Article  Google Scholar 

  • Fernandez JPR, Franchito SH, Rao VB (2006) Simulation of the summer circulation over South America by two regional climate models. Part I: mean climatology. Theor Appl Climatol 86:247–260. doi:10.1007/s00704-005-0212-6

    Article  Google Scholar 

  • Frei C, Schöll R, Fukutome S, Schmidli J, Vidale PL (2006) Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. J Geophys Res 111:D06105. doi:10.1029/2005JD005965

    Article  Google Scholar 

  • Gao X, Pal JS, Giorgi F (2006) Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation. Geophys Res Lett 33:L03706. doi:10.1029/2005GL024954

    Article  Google Scholar 

  • Garreaud R, Falvey M (2008) The coastal winds off western subtropical South America in future climate scenarios. Int J Climatol 29:543–554. doi:10.1002/joc.1716

    Article  Google Scholar 

  • Giorgi F, Diffenbaugh N (2008) Developing regional climate change scenarios for use in assessment of effects on human health and disease. Clim Res 36:141–151. doi:10.3354/cr00728

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT (1993) Development of a second-generation regional climate model (RegCM2). Part II: convective process and assimilation of lateral boundary conditions. Mon Weather Rev 121:2814–2831. doi:10.1175/1520-0493(1993)121

    Article  Google Scholar 

  • Giorgi F, Hewitson B, Christensen J, Hulme M, Von Storch H, Whetton P, Jones R, Mearns L, Fu C (2001) Regional Climate Information: Evaluation and Projections. In: Houghton J T, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Chap 10, contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on climate change. Cambridge University Press, UK

  • Giorgi F, Bi X, Pal JS (2004) Mean, interannual variability and trends in a regional climate change experiment over Europe. I: present-day climate (1961–1990). Clim Dyn 22:733–756. doi:10.1007/s00382-004-0467-0

    Article  Google Scholar 

  • Graham L, Hagemann S, Jaun S, Beniston M (2007) On interpreting hydrological change from regional climate models. Clim Change 81:97–122. doi:10.1007/s10584-006-9217-0

    Article  Google Scholar 

  • Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterization. Mon Wea Rev 121:764–787. doi:10.1175/1520-0493

    Article  Google Scholar 

  • Grimm A, Natori A (2006) Climate change and interannual variability of precipitation in South America. Geophys Res Lett 33:L19706. doi:10.1029/2006GL026821

    Article  Google Scholar 

  • Haylock MR, Peterson T, Abreu de Sousa JR, Alves LM, Ambrizzi T, Baez J, Barbosa de Brito JI, Barros VR, Berlato MA, Bidegain M, Coronel G, Corradi V, Grimm AM, dos Anjos RJ, Karoly D, Marengo JA, Marino MB, Meira PR, Miranda GC, Molion LCB, Muncunil DF, Nechet D, Ontaneda G, Quintana J, Ramirez E, Rebello E, Rusticucci M, Santos JL, Varillas IT, Villanueva JG, Vincent L, Yumico M (2006) Trends in total and extreme South American rainfall 1960–2000 and links with sea surface temperature. J Clim 19:1490–1512

    Article  Google Scholar 

  • Hewitson BC, Crane RG (1996) Climate downscaling: techniques and application. Clim Res 7:85–95. doi:10.3354/cr0007085

    Article  Google Scholar 

  • Hewitt CD, Griggs DJ (2004) Ensembles-based predictions of climate changes and their impacts. Eos Trans AGU 85(52). doi:10.1029/2004EO520005

  • Holtslag AAM, de Bruijn EIF, Pan HL (1990) A high resolution air mass transformation model for short-range weather and forecasting. Mon Weather Rev 118:1561–1575

    Article  Google Scholar 

  • Hulme M, Jenkins GJ, Lu X, Turnpenny JR, Mitchell TD, Jones RG, Lowe J, Murphy JM, Hassell D, Boorman P, Macdonald R, Hill S (2002) Climate-change scenarios for the United Kingdom: the UKCIP02 Scientific Report. Tyndall Centre for Climate Change Research. School of Environmental Sciences. University of East Anglia, Norwich, p 120

  • Islam S, Rehman N (2009) Future change in the frequency of warm and cold spells durations over Pakistan simulated by the PRECIS regional climate Model. Clim Change. doi:10.1007/s10584-009-9557-7

  • Janjic ZI (1994) The step-mountain eta coordinate model: further development of the convection, viscous sublayer, and turbulence closure scheme. Mon Weather Rev 122:927–945

    Article  Google Scholar 

  • Jones RG, Noguer M, Hassell D, Hudson D, Wilson S, Jenkins G, Mitchell J (2004) Generating high resolution climate change scenarios using PRECIS, Hadley Centre for Climate Prediction and Research. Met Office Hadley Centre, UK, p 40

    Google Scholar 

  • Jones RG, Murphy JM, Hassell DC, Woodage MJ (2008) A high resolution atmospheric GCM for the generation of regional climate scenarios. Clim Dyn

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP, Williamson DL, Rasch PJ (1996) Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Rep. TN-420+STR, p 152

  • Lacis AA, Hansen JE (1974) A parameterization for the absorption of solar radiation in the Earth’s atmosphere. J Atmos Sci 31:118–133. doi:10.1175/1520-0469(1974)031

    Article  Google Scholar 

  • Li W, Fu R, Dickinson RE (2006) Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4. J Geophys Res 111:D02111. doi:10.1029/2005JD006355

    Article  Google Scholar 

  • Lionello P, Boldrin U, Giorgi F (2007) Future changes in cyclone climatology over Europe as inferred from a regional climate simulation. Clim Dyn 30:657–671. doi:10.1007/s00382-007-0315-0

    Article  Google Scholar 

  • Marengo JA (2009) Future change of climate in South America in the late 21st century: the CREAS Project, AGU AS Newsletter, May 2009, p 5

  • Marengo JA, Ambrizzi T (2006) Use of regional climate models in impacts assessments and adaptations studies from continental to regional and local scales: the CREAS (Regional Climate Change Scenarios for South America) initiative in South America. Proceedings of 8 ICSHMO, Foz do Iguaçu, Brazil, pp 291–296

  • Marengo JA, Cavalcanti IFA, Satyamurty P, Trosnikov I, Nobre CA, Bonatti JP, Camargo H, Sampaio G, Sanches MB, Manzi AO, Castro CAC, D’Almeida C, Pezzi LP, Candido L (2003) Assessment of regional seasonal rainfall predictability using the CPTEC/COLA atmospheric GCM. Clim Dyn 21:459–475. doi:10.1007/s00382-003-0346-0

    Article  Google Scholar 

  • Marengo JA, Jones R, Alves L, Valverde M (2009) Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int J Climatol. Published online in Wiley InterScience. doi:10.1002/joc.1863 (http://www.interscience.wiley.com)

  • Mearns L (2004) NARCCAP North American Regional Climate Change Assessment Program A Multiple AOGCM and RCM Climate Scenario Project over North America. AGU Fall Meeting, San Francisco

    Google Scholar 

  • Meehl G, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 Multimodel data set: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi:10.1175/BAMS-88-9-1383

    Article  Google Scholar 

  • Mellor GL, Yamada T (1974) A hierarchy of turbulence closure models for boundary layers. J Atmos Sci 31:1791–1806. doi:10.1175/1520-0469(1974)031

    Article  Google Scholar 

  • Mesinger F, Janjic ZI, Nickovic S, Gavrilov D, Deaven DG (1988) The step-mountain coordinate model description and performance for cases of Alpine lee cyclogenesis and for a case of an Appalachian redevelopment. Mon Weather Rev 116:1493–1518. doi:10.1175/1520-0493(1988)116

    Article  Google Scholar 

  • Morales P, Hickler T, Rowell DP, Smith B, Sykes MT (2007) Changes in European ecosystem productivity and carbon balance driven by regional climate model output. Glob Chang Biol 13:108–122. doi:10.1111/j.1365-2486.2006.01289.x

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grubler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special report on emissions scenarios. Cambridge University Press, UK, p 599

  • Nuñez MN, Solman SA, Cabré MF (2006) Mean climate and annual cycle in a regional climate change experiment over Southern South America. II: climate change scenarios (2081–2090). Proceedings of 8 ICSHMO, Foz do Iguaçu, Brazil, pp 325–331

  • Nuñez MN, Solman SA, Cabré MF (2008) Regional climate change experiments over southern South America. II: climate Change scenarios in the late twenty-first century. Clim Dyn. doi 10.1007/s00382-008-0449-8

  • Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105:29579–29594

    Article  Google Scholar 

  • Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Gao X, Rauscher SA, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Bell JL, Diffenbaugh NS, Karmacharya J, Konaré A, Martinez D, Rocha RP, Sloan LC, Steiner AL (2007) Regional climate modeling for the developing world—the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1409. doi:10.1175/BAMS-88-9-1395

    Article  Google Scholar 

  • Pesquero, J, Chou, SC., Nobre, CA, Marengo JA (2009) Climate downscaling over South America for 1961–1970 using the Eta Model. Theor Appl Climatol. doi:10.1007/s00704-009-0123-z

  • Pisnichenko IA, Tarasova TA (2009a) Climate version of the ETA regional forecast model. Evaluating the consistency between the ETA model and HadAM3P global model. Theor Appl Climatol. doi:10.1007/s00704-009-0139-4

  • Pisnichenko IA, Tarasova TA (2009b) The climate version of the Eta regional forecast model. II. Evaluation of the Eta CCS model performance against reanalysis data and surface observations. arXiv:0901.1461v1 [physics.ao-ph] (http://arxiv.org/abs/0901.1461v1)

  • Pisnichenko IA, Tarasova TA, Fernandez JPR, Marengo JA (2006) Validation of the Eta WS regional climate model driven by boundary conditions from the HadAM3H over South America. In: Proceedings of 8ICSHMO, Foz do Iguacu, Brazil, 24–28 April, INPE, pp 595–597

  • Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16:123–146. doi:10.1007/s003820050009

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Rupa Kumar K, Sahai AK, Krishna Kumar K, Patwardhan SK, Mishra PK, Revadekar JV, Kamala K, Pant GB (2006) High-resolution climate change scenarios for India for the 21st century. Curr Sci 90:334–345

    Google Scholar 

  • Seth A, Rojas M (2003) Simulation and sensitivity in a nested modeling system for South America. Part I: reanalysis boundary forcing. J Clim 16:2437–2453. doi:10.1175/1520-0442(2003)016

    Article  Google Scholar 

  • Soares W, Marengo JA (2009) Assessments of moisture fluxes east of the Andes in South America in a global warming scenario. Int J Climatol 29:1395–1414. doi:10.1002/joc.1800

    Google Scholar 

  • Solman SA, Nuñez MN (1999) Local estimates of global climate change: a statistical downscaling approach. Int J Climatol 19:835–861. doi:10.1002/(SICI)1097-0088(19990630)19:8

    Article  Google Scholar 

  • Solman SA, Nuñez MN, Cabré MF (2008) Regional climate change experiments over southern South America I: present climate. Clim Dyn 30:533–552. doi:10.1007/s00382-007-0304-3

    Article  Google Scholar 

  • Tadross M, Jack C, Hewitson B (2005) On RCM-based projections of change in southern African summer climate. Geophys Res Lett 32:L23713. doi:10.1029/2005GL024460

    Article  Google Scholar 

  • Tarasova TA, Pisnichenko IA (2009) Performance of various radiation parameterizations in the climate version of the Eta regional model driven by reanalysis and HadAM3P. In: Current problems in atmospheric radiation (IRS2008): Proceedings of the International Radiation Symposium. Aip. Conf. Proc. 11 March, 1100:635–638. doi:10.1063/1.3117067

  • Tarasova TA, Fernandez JPR, Pisnichenko IA, Marengo JA, Ceballos JC, Bottino MJ (2006) Impact of new solar radiation parameterization in the Eta model on the simulation of summer climate over South America. J Appl Meteorol Climatol 45:318–333

    Article  Google Scholar 

  • Tebaldi C, Haohow K, Arblaster J, Meehl G (2007) Going to extremes. An intercomparison of model-simulated historical and future changes in extreme events. Clim Change 79:21–185. doi:10.1007/s10584-006-9051-4

    Google Scholar 

  • Urrutia R, Vuille M (2009) Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. J Geophys Res Atmos 114(D2):D02108

    Google Scholar 

  • Vera C, Silvestri G, Liebmann B, González P (2006) Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. Geophys Res Lett 33:L13707. doi:10.1029/2006GL025759

    Article  Google Scholar 

  • Wilby RL, Wigley TML (1997) Downscaling general circulation model output: a review of methods and limitations. Prog Phys Geogr 21:530–548. doi:10.1177/030913339702100403

    Article  Google Scholar 

  • Wilson S, Hassell D, Hein D, Jones R, Taylor R (2005) Installing and using the Hadley Centre modelling system. PRECIS, Exeter, p 135

    Google Scholar 

  • Xu YL, Huang XY, Zhang Y, Lin WT, Lin ED (2006a) Statistical analyses of climate change scenarios over China in the 21st century. Adv Clim Change Res 2:50–53

    Google Scholar 

  • Xu YL, Zhang Y, Lin ED, Lin WT, Dong WJ, Jones R, Hassell D, Wilson S (2006b) Analyses on the climate change responses over China under SRES B2 scenario using PRECIS. Chin Sci Bull 51:2260–2267. doi:10.1007/s11434-006-2099-8

    Article  Google Scholar 

  • Zhang Y, Yinlong X, Wenjie D, Lijuan C, Sparrow M (2006) A future climate scenario of regional changes in extreme climate events over China using the PRECIS climate model. Geophys Res Lett 33:L24702. doi:10.1029/2006GL027229

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Hadley Centre for providing the PRECIS model system. CREAS is funded by MMA/BIRD/GEF/CNPq (PROBIO Project), the Brazilian National Climate Change Program from the Ministry of Science and Technology MCT, the National Institute of Science and Technology-Climate Change INCT-Mudanças Climaticas from MCT, the UK Global Opportunity Fund-GOF Project Using Regional Climate Change Scenarios for Studies on Vulnerability and Adaptation in Brazil and South America, and GOF-Dangerous Climate Change (DCC). T.A. and J.M. also thanks FAPESP, CNPq and CAPES.. We would like to thank Dr. I.A. Pisnichenko who has provided the results of the long-term runs of the Eta CCS model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose A. Marengo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marengo, J.A., Ambrizzi, T., da Rocha, R.P. et al. Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Clim Dyn 35, 1073–1097 (2010). https://doi.org/10.1007/s00382-009-0721-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-009-0721-6

Keywords

Navigation