Skip to main content

Advertisement

Log in

Impact of Greenland and Antarctic ice sheet interactions on climate sensitivity

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We use the Earth system model of intermediate complexity LOVECLIM to show the effect of coupling interactive ice sheets on the climate sensitivity of the model on a millennial time scale. We compare the response to a 2×CO2 warming scenario between fully coupled model versions including interactive Greenland and Antarctic ice sheet models and model versions with fixed ice sheets. For this purpose an ensemble of different parameter sets have been defined for LOVECLIM, covering a wide range of the model’s sensitivity to greenhouse warming, while still simulating the present-day climate and the climate evolution over the last millennium within observational uncertainties. Additional freshwater fluxes from the melting ice sheets have a mitigating effect on the model’s temperature response, leading to generally lower climate sensitivities of the fully coupled model versions. The mitigation is effectuated by changes in heat exchange within the ocean and at the sea–air interface, driven by freshening of the surface ocean and amplified by sea–ice-related feedbacks. The strength of the effect depends on the response of the ice sheets to the warming and on the model’s climate sensitivity itself. The effect is relatively strong in model versions with higher climate sensitivity due to the relatively large polar amplification of LOVECLIM. With the ensemble approach in this study we cover a wide range of possible model responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alley R, Clark P, Huybrechts P, Joughin I (2005) Ice sheets and sea-level change. Science 310:456–460

    Article  Google Scholar 

  • Beckmann A, Goosse H (2003) A parameterization of ice shelf-ocean interactions for climate models. Ocean Model 5:157–170

    Article  Google Scholar 

  • Brovkin V, Ganopolski A, Svirezhev Y (1997) A continuous climate-vegetation classification for use in climate biosphere studies. Ecol Modell 101:251–261

    Article  Google Scholar 

  • Bryan K, Lewis L (1979) A water mass model of the world ocean. J Geophys Res 84(C5):2503–2517

    Article  Google Scholar 

  • Calov R, Ganopolski A, Claussen M, Petoukhov V, Greve R (2005) Transient simulation of the last glacial inception. Part I: glacial inception as a bifurcation in the climate system. Clim Dyn 24:545–561

    Article  Google Scholar 

  • Chou C, Neelin J (1996) Linearization of a long-wave radiation scheme for intermediate tropical atmospheric models. J Geophys Res 101(15):15,129–15,145

    Google Scholar 

  • Cubasch U, Meehl GA, Boer GJ, Stouffer RJ, Dix M, Noda A, Senior CA, Raper S, Yap KS (2001) Projections of future climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001. The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 881

  • Driesschaert E, Fichefet T, Goosse H, Huybrechts P, Janssens I, Mouchet A, Munhoven G, Brovkin V, Weber SL (2007) Modeling the influence of Greenland ice sheet melting on the meridional overturning circulation during the next millennia. Geophys Res Lett L10707

  • Fichefet T, Morales Maqueda M (1997) Sensitivity of a global sea-ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12,609–12,646

    Article  Google Scholar 

  • Fichefet T, Poncin C, Goosse H, Huybrechts P, Janssens I, Le Treut H (2003) Implications of changes in freshwater flux from the Greenland ice sheet for the climate of the 21st century. Geophys Res Lett 30:L1911

    Article  Google Scholar 

  • Goosse H, Fichefet T (1999) Importance of ice-ocean interactions for the global ocean circulation: a model study. J Geophys Res 104:23,337–23,355

    Google Scholar 

  • Goosse H, Deleersnijder E, Fichefet T, England M (1999) Sensitivity of a global coupled ocean–sea-ice model to the parameterization of vertical mixing. J Geophys Res 104:13,681–13,695

    Google Scholar 

  • Goosse H, Selten FM, Haarsma RJ, Opsteegh JD (2001) Decadal variability in high northern latitudes as simulated by an intermediate complexity climate model. Ann Glaciol 33:525–532

    Article  Google Scholar 

  • Goosse H, Driesschaert E, Fichefet T, Loutre M-F (2007) Information on the early Holocene climate constrains the summer sea ice projections for the 21st century. Clim Past 3:683–692

    Article  Google Scholar 

  • Goosse H, Brovkin V, Fichefet T, Haarsma R, Huybrechts P, Jongma J, Mouchet A, Selten F, Barriat PY, Campin JM, Deleersnijder E, Driesschaert E, Goelzer H, Janssens I, Loutre MF, Morales Maqueda MA, Opsteegh T, Mathieu PP, Munhoven G, Petterson JE, Renssen H, Roche D, Schaeffer M, Tartinville B, Timmermann A, Weber SL (2010) Description of the Earth system model of intermediate complexity LOVECLIM version 1.2. Geosci Model Dev Discuss 3:309–390

    Article  Google Scholar 

  • Gregory JM, Huybrechts P (2006) Ice-sheet contributions to future sea-level change. Philos Trans R Soc A 364:1709–1732

    Article  Google Scholar 

  • Gregory JM, Stouffer RJ, Raper SCB, Stott PA, Rayner NA (2002) An observationally based estimate of the climate sensitivity. J Clim 15:3117–3121

    Article  Google Scholar 

  • Gregory JM, Dixon KW, Stouffer RJ, Weaver AJ, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov AP, Thorpe RB (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32:L12703

    Article  Google Scholar 

  • Haarsma RJ, Selten FM, Opsteegh JD, Lenderink G, Liu Q (1996) ECBILT, a coupled atmosphere ocean sea-ice model for climate predictability studies. KNMI, De Bilt, The Netherlands, 31 p

  • Holland PR, Jenkins A, Holland DM (2008) The response of ice shelf basal melting to variations in ocean temperature. J Clim 21:2558–2572

    Article  Google Scholar 

  • Huybrechts P (1990) A 3-D model for the Antarctic ice sheet: a sensitivity study on the glacial–interglacial contrast. Clim Dyn 5:79–92

    Google Scholar 

  • Huybrechts P (1996) Basal temperature conditions of the Greenland ice sheet during the glacial cycles. Ann Glaciol 23:226–236

    Google Scholar 

  • Huybrechts P (2002) Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Q Sci Rev 21:203–231

    Article  Google Scholar 

  • Huybrechts P, de Wolde J (1999) The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J Clim 12:2169–2188

    Article  Google Scholar 

  • Huybrechts P, Janssens I, Poncin C, Fichefet T (2002) The response of the Greenland ice sheet to climate changes in the 21st century by interactive coupling of an AOGCM with a thermomechanical ice sheet model. Ann Glaciol 35:409–415

    Article  Google Scholar 

  • Janssens I, Huybrechts P (2000) The treatment of melt water retention in mass-balance parameterizations of the Greenland ice sheet. Ann Glaciol 31:133–140

    Article  Google Scholar 

  • Johns TC, Gregory JM, Ingram WJ, Johnson CE, Jones A, Lowe JA, Mitchell JFB, Roberts DL, Sexton DMH, Stevenson DS, Tett SFB, Woodage MJ (2003) Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. Clim Dyn 20:583–612

    Google Scholar 

  • Knutti R, Stocker TF, Joos F, Plattner G-K (2002) Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature 416:719–723

    Article  Google Scholar 

  • Loutre MF, Mouchet A, Fichefet T, Goosse H, Goelzer H, Huybrechts P (2010) Evaluating climate model performance with various parameter sets using observations over the last centuries. Clim Past Discuss 6:711–765

    Article  Google Scholar 

  • Mikolajewicz U, Gröger M, Maier-Reimer E, Schurgers G, Vizcaíno M, Winguth A (2007a) Long-term effects of anthropogenic CO2 emissions simulated with a complex earth system model. Clim Dyn 28:599–633

    Article  Google Scholar 

  • Mikolajewicz U, Vizcaíno M, Jungclaus J, Schurgers G (2007b) Effect of ice sheet interactions in anthropogenic climate change simulations. Geophys Res Lett 34:L18706

    Article  Google Scholar 

  • Mouchet A, François L (1996) Sensitivity of a global oceanic carbon cycle model to the circulation and to the fate of organic matter: preliminary results. Phys Chem Earth 21:511–516

    Article  Google Scholar 

  • Murphy JM (1995) Transient response of the Hadley Centre coupled ocean–atmosphere model to increasing carbon dioxide. Part III: analysis of global-mean response using simple models. J Clim 8:496–514

    Article  Google Scholar 

  • Nakashiki N, Kim D-H, Bryan FO, Yoshida Y, Tsumune D, Maruyama K, Kitabata H (2006) Recovery of thermohaline circulation under CO2 stabilization and overshoot scenario. Ocean Model 15:200–217

    Article  Google Scholar 

  • Opsteegh J, Haarsma R, Selten F, Kattenberg A (1998) ECBILT: a dynamic alternative to mixed boundary conditions in ocean models. Tellus 50:348–367

    Article  Google Scholar 

  • Paterson WSB, Budd WF (1982) Flow parameters for ice sheet modelling. Cold Reg Sci Technol 6:175–177

    Article  Google Scholar 

  • Pollard D, DeConto RM (2009) Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458:329–332

    Article  Google Scholar 

  • Rahmstorf S (1994) Rapid climate transitions in a coupled ocean-atmosphere model. Nature 372:82–85

    Article  Google Scholar 

  • Rahmstorf S, Ganopolski A (1999) Long-term global warming scenarios computed with an efficient coupled climate model. Clim Change 43:353–367

    Article  Google Scholar 

  • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Ridley J, Huybrechts P, Gregory J, Lowe J (2005) Elimination of the Greenland ice sheet in a high CO2 climate. J Clim 18:3409–3427

    Article  Google Scholar 

  • Schaeffer M, Selten F, van Dorland R (1998) Linking Image and ECBILT. National Institute for public health and the environment (RIVM), Bilthoven, The Netherlands, Report no 4815008008

  • Schneider von Deimling T, Held H, Ganopolski A, Rahmstorf S (2006) Climate sensitivity estimated from ensemble simulations of glacial climate. Clim Dyn 27:149–163

    Article  Google Scholar 

  • Shine KP, Henderson-Sellers A (1985) The sensitivity of a thermodynamic sea ice model to changes in surface albedo parameterization. J Geophys Res 90(D1):2243–2250

    Article  Google Scholar 

  • Stocker TF, Wright DG, Broecker WS (1992) The influence of high-latitude surface forcing on the global thermohaline circulation. Paleoceanography 7(5):529–541

    Article  Google Scholar 

  • Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M, Flato GM, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier WR, Robitaille DY, Sokolov A, Vettoretti G, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387

    Article  Google Scholar 

  • Swingedouw D, Fichefet T, Huybrechts P, Goosse H, Driesschaert E, Loutre M-F (2008) Antarctic ice-sheet melting provides negative feedbacks on future climate warming. Geophys Res Lett 35:L17705

    Article  Google Scholar 

  • Vizcaíno M, Mikolajewicz U, Gröger M, Maier-Reimer E, Schurgers G, Winguth A (2008) Long-term ice sheet-climate interactions under anthropogenic greenhouse forcing simulated with a complex Earth System Model. Clim Dyn 31:665–690

    Article  Google Scholar 

  • Vizcaíno M, Mikolajewicz U, Jungclaus J, Schurgers G (2010) Climate modification by future ice sheet changes and consequences for ice sheet mass balance. Clim Dyn 34:301–324

    Article  Google Scholar 

  • Warner RC, Budd WF (1998) Modeling the long-term response of the Antarctic ice sheet to global warming. Ann Glaciol 27:161–168

    Google Scholar 

  • Winguth A, Mikolajewicz U, Gröger M, Maier-Reimer E, Schurgers G, Vizcaíno M (2005) Centennial-scale interactions between the carbon cycle and anthropogenic climate change using a dynamic Earth system model. Geophys Res Lett 32:L23714

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge support through the Belgian Federal Public Planning Service Science Policy Research Programme on Science for a Sustainable Development under Contract SD/CS/01. H. Goosse is Research Associate with the Fonds National de la Recherche Scientifique (FNRS-Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Goelzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goelzer, H., Huybrechts, P., Loutre, M.F. et al. Impact of Greenland and Antarctic ice sheet interactions on climate sensitivity. Clim Dyn 37, 1005–1018 (2011). https://doi.org/10.1007/s00382-010-0885-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-010-0885-0

Keywords

Navigation