Skip to main content

Advertisement

Log in

Influence of local and remote SST on North Atlantic tropical cyclone potential intensity

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We examine the role of local and remote sea surface temperature (SST) on the tropical cyclone potential intensity in the North Atlantic using a suite of model simulations, while separating the impact of anthropogenic (external) forcing and the internal influence of Atlantic Multidecadal Variability. To enable the separation by SST region of influence we use an ensemble of global atmospheric climate model simulations forced with historical, 1856–2006 full global SSTs, and compare the results to two other simulations with historical SSTs confined to the tropical Atlantic and to the tropical Indian Ocean and Pacific. The effects of anthropogenic plus other external forcing and that of internal variability are separated by using a linear, “signal-to-noise” maximizing EOF analysis and by projecting the three model ensemble outputs onto the respective external forcing and internal variability time series. Consistent with previous results indicating a tampering influence of global tropical warming on the Atlantic hurricane potential intensity, our results show that non-local SST tends to reduce potential intensity associated with locally forced warming through changing the upper level atmospheric temperatures. Our results further indicate that the late twentieth Century increase in North Atlantic potential intensity, may not have been dominated by anthropogenic influence but rather by internal variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bister M, Emanuel KA (1998) Dissipative heating and hurricane intensity. Meteor Atmos Phys 65:223–240

    Article  Google Scholar 

  • Bister M, Emanuel KA (2002a) Low frequency variability of tropical cyclone potential intensity: 1. Interannual to interdecadal variability. J Geophys Res 107:4801. doi:10.1029/2001JD000776

    Article  Google Scholar 

  • Bister M, Emanuel KA (2002b) Low frequency variability of tropical cyclone potential intensity: 2. Climatology for 1982–1995. J Geophys Res 107:4621. doi:10.1029/2001JD000780

    Article  Google Scholar 

  • Bryan GH, Rotunno R (2009) The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon Weather Rev 137:1770–1789

    Article  Google Scholar 

  • DelSole T, Tippett MK, Shukla J (2011) A significant component of unforced multidecadal variability in the recent acceleration of global warming. J Clim 24:909–926

    Article  Google Scholar 

  • Emanuel KA (1986) An air-sea interaction theory for tropical cyclones. Part I: steady-state maintenance. J Atmos Sci 43:585–604

    Article  Google Scholar 

  • Emanuel KA (1987) The dependence of hurricane intensity on climate. Nature 326:483–485

    Article  Google Scholar 

  • Emanuel KA (1988) The maximum intensity of hurricanes. J Atmos Sci 45:1143–1155

    Article  Google Scholar 

  • Emanuel KA (1995) Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J Atmos Sci 52:3969–3976

    Article  Google Scholar 

  • Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688

    Article  Google Scholar 

  • Emanuel K (2010) Tropical cyclone activity downscaled from NOAA-CIRES Reanalysis, 1908–1958. J Adv Model Earth Syst 2. doi:10.3894/JAMES.2010.2.1

  • Emanuel K, Solomon S, Folini D, Davis S, Cagnazzo C (2012) Influenced of tropical tropopause layer cooling on Atlantic hurricane activity. J Clim (submitted)

  • Enfield DB, Mestas-Nunez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and it’s relation to rainfall and river flows in the continental U.S. Geophys Res Lett 28:2077–2080

    Article  Google Scholar 

  • ERA-Interim (2011) ERA-Interim re-analysis brief description, http://www.ecmwf.int/research/era/do/get/ERA-Interim_brief

  • Goldenberg SB, Landsea CW, Mestas-Nuñez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293:474–479

    Article  Google Scholar 

  • Graumann A, Houston T, Lawrimore J, Levinson D, Lott N, McCown S, Stephens S, Wuertz D (2005) Hurricane Katrina—a climatological perspective. NOAA’s National Climatic Data Center, Technical Report 2005-01

  • Gray WM (1968) Global view of the origin of tropical disturbances and storms. Mon Weather Rev 96:669–700

    Article  Google Scholar 

  • Gray WM (1979) Hurricanes: their formation, structure and likely role in the tropical circulation. Meteorology over the tropical oceans. Royal Meteorological Society, Bracknall

    Google Scholar 

  • Holland GJ (1997) The maximum potential intensity of tropical cyclones. J Atmos Sci 54:2519–2541

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal MB, Rajagopalan B (1998) Analyses of global sea surface temperature: 1856–1991. J Geophys Res 103:18567–18589

    Article  Google Scholar 

  • Kiehl JT, Hack JJ, Bonan GB, Bovile BA, Williamson DL, Rasch PJ (1998) The national center for atmospheric research community climate model: CCM3. J Clim 11:1131–1149

    Article  Google Scholar 

  • Kistler R et al (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267

    Article  Google Scholar 

  • Kossin JP, Camargo SJ (2009) Hurricane track variability and secular potential intensity trends. Clim Chang 9:329–337

    Article  Google Scholar 

  • Kossin JP, Vimont DJ (2007) A more general framework for understanding Atlantic hurricane variability and trends. Bull Am Meteorol Soc 88:1767–1781

    Article  Google Scholar 

  • Kossin JP, Camargo SJ, Sitkowski M (2010) Climate modulation of North Atlantic hurricane tracks. J Clim 23:3057–3076

    Article  Google Scholar 

  • Kushnir Y (1994) Interdecadal variations in North Atlantic Sea surface temperature and associated atmospheric conditions. J Clim 7:141–157

    Article  Google Scholar 

  • Kushnir Y, Seager R, Ting M, Naik N, Nakamura J (2010) Mechanisms of tropical Atlantic SST influence on North American precipitation variability. J Clim 23:5610–5628

    Article  Google Scholar 

  • Lau N-G, Nath MJ (1994) A modeling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere-ocean system. J Clim 7:1184–1207

    Article  Google Scholar 

  • Mann ME, Emanuel KA (2006) Atlantic hurricane trends linked to climate change. EOS. Trans Am Geophys Union 87:233–241

    Article  Google Scholar 

  • Montgomery MT, Van Sang N, Smith RK, Persing J (2009) Do tropical cyclones intensify by WISHE? Q J R Meteorol Soc 135:1697–1714

    Article  Google Scholar 

  • Palmén EH (1948) On the formation and structure of tropical cyclones. Geophysica 3:26–38

    Google Scholar 

  • Ramsay HA, Sobel AH (2011) Effects of relative and absolute sea surface temperature on tropical cyclone potential intensity using a single-column model. J Clim 24:183–193

    Article  Google Scholar 

  • Rayner N, Parker D, Horton E, Folland C, Alexander L, Rowell D, Kent E, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Schubert S et al (2009) A US CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: overview and results. J Clim 22:5251–5272

    Article  Google Scholar 

  • Seager R (2007) The turn of the century North American drought: global context, dynamics, and past analogs. J Clim 20:5527–5552

    Article  Google Scholar 

  • Seager R, Kushnir Y, Herweijer C, Naik N, Velez J (2005) Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J Clim 18:4065–4088

    Article  Google Scholar 

  • Seager R, Kushnir Y, Ting M, Cane M, Naik N, Miller J (2008) Would advance knowledge of 1930s SSTs have allowed prediction of the dust bowl drought? J Clim 21:3261–3281

    Article  Google Scholar 

  • Servain J (1991) Simple climatic indexes for the tropical Atlantic-Ocean and some applications. J Geophys Res C 96:15137–15146

    Article  Google Scholar 

  • Smith RK, Montgomery MT, Vogl S (2008) A critique of Emanuel’s hurricane model and potential intensity theory. Quart J R Meteorol Soc 134:551–561

    Article  Google Scholar 

  • Sobel AH, Camargo SJ (2012) Projected future seasonal changes in tropical summer climate. J Clim 24:473–487

    Article  Google Scholar 

  • Sobel AH, Held IM, Bretherton CS (2002) The ENSO signal in tropical tropospheric temperature. J Clim 12:2702–2706

    Article  Google Scholar 

  • Solomon A, Goddard L, Kumar A, Carton J, Deser C, Fukumori I, Greene AM, Hegerl G, Kirtman B, Kushnir Y, Newman M, Smith D, Vimont D, Delworth T, Meehl GA, Stockdale T (2011) Distinguishing the roles of natural and anthropogenically forced decadal climate variability. Bull Am Meteorol Soc 92:141–156

    Article  Google Scholar 

  • Swanson KL (2008) Nonlocality of tropical cyclone intensities. Geochem Geophys Geosyst 9:Q04V01

    Article  Google Scholar 

  • Tang BH, Neelin JD (1994) ENSO influence on Atlantic hurricanes via tropospheric warming. Geophys Res Lett 31:L24204

    Article  Google Scholar 

  • Ting M, Kushnir Y, Seager R, Li C (2009) Forced and natural 20th Century SST trends in the North Atlantic. J Clim 22:1469–1481

    Article  Google Scholar 

  • Ting M, Kushnir Y, Seager R, Li C (2011) Robust features of Atlantic multidecadal variability and its climate impacts. Geophys Res Lett 38:L17705. doi:10.1029/2011GL048712

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 re-analysis. Quart JR Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Vecchi GA, Soden BJ (2007) Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450:1066–1070

    Article  Google Scholar 

  • Vecchi GA, Swanson KL, Soden BJ (2008) Whither hurricane activity? Science 322:687–689

    Article  Google Scholar 

  • Vecchi GA, Fueglistaler S, Held IM, Knutson TR, Zhao M (2012) Influence of tropical tropopause layer cooling on Atlantic hurricane activity. J Clim (submitted)

  • Villarini G, Vecchi GA (2012) Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models. Nat Clim Chang Early online. doi:10.1938/nclimate1530

    Google Scholar 

  • Vimont DJ, Kossin JP (2007) The Atlantic meridional mode and hurricane activity. Geophys Res Lett 34:L07709

    Article  Google Scholar 

  • Wing AA, Sobel AH, Camargo SJ (2007) The relationship between the potential and actual intensities of tropical cyclones on interannual time scales. Geophys Res Lett 34:L08810

    Article  Google Scholar 

  • Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillation on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support of the National Oceanic and Atmospheric Administration (NOAA) Grants NA08OAR4320912, NA10OAR4310124 and NA10OAR4320137. We would like to thank Donna Lee and Naomi Naik (LDEO) for performing the CCM3 simulations used in this study. The authors would like to thank the Global Decadal Hydroclimate group at Lamont and Columbia for helpful discussion and input and two anonymous reviewers for their useful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzana J. Camargo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camargo, S.J., Ting, M. & Kushnir, Y. Influence of local and remote SST on North Atlantic tropical cyclone potential intensity. Clim Dyn 40, 1515–1529 (2013). https://doi.org/10.1007/s00382-012-1536-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1536-4

Keywords

Navigation