Skip to main content

Advertisement

Log in

Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A large component of present-day sea-level rise is due to the melt of glaciers other than the ice sheets. Recent projections of their contribution to global sea-level rise for the twenty-first century range between 70 and 180 mm, but bear significant uncertainty due to poor glacier inventory and lack of hypsometric data. Here, we aim to update the projections and improve quantification of their uncertainties by using a recently released global inventory containing outlines of almost every glacier in the world. We model volume change for each glacier in response to transient spatially-differentiated temperature and precipitation projections from 14 global climate models with two emission scenarios (RCP4.5 and RCP8.5) prepared for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The multi-model mean suggests sea-level rise of 155 ± 41 mm (RCP4.5) and 216 ± 44 mm (RCP8.5) over the period 2006–2100, reducing the current global glacier volume by 29 or 41 %. The largest contributors to projected global volume loss are the glaciers in the Canadian and Russian Arctic, Alaska, and glaciers peripheral to the Antarctic and Greenland ice sheets. Although small contributors to global volume loss, glaciers in Central Europe, low-latitude South America, Caucasus, North Asia, and Western Canada and US are projected to lose more than 80 % of their volume by 2100. However, large uncertainties in the projections remain due to the choice of global climate model and emission scenario. With a series of sensitivity tests we quantify additional uncertainties due to the calibration of our model with sparsely observed glacier mass changes. This gives an upper bound for the uncertainty range of ±84 mm sea-level rise by 2100 for each projection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adhikari S, Marshall SJ (2012) Glacier volume-area relation for high-order mechanics and transient glacier states. Geophys Res Lett 39:L16505. doi:10.1029/2012GL052712

    Article  Google Scholar 

  • Arendt A et al (2012) Randolph glacier inventory: a dataset of global glacier outlines version: 2.0, 11 June 2012, GLIMS Technical Report

  • Bahr DB, Meier MF, Peckham SD (1997) The physical basis of glacier volume-area scaling. J Geophys Res 102(B9):20355–20362

    Article  Google Scholar 

  • Beck C, Grieser J, Rudolf B (2005) A new monthly precipitation climatology for the global land areas for the period 1951 to 2000. German Weather Service, Offenbach

    Google Scholar 

  • Bevington PR (1969) Data reduction and error analysis for the physical sciences. McGraw-Hill, New York

    Google Scholar 

  • Bliss A, Hock R, Cogley JG (2013) A new inventory of mountain glaciers and ice caps for the Antarctic periphery. Ann Glaciol 54(63):191–199. doi:10.3189/2013AoG63A377

    Google Scholar 

  • Burgess D, Sharp M, Mair D, Dowdeswell J, Benham T (2005) Flow dynamics and iceberg calving rates of Devon Ice Cap, Nunavut, Canada. J Glaciol 51:219–230

    Article  Google Scholar 

  • Chen J, Ohmura A (1990) Estimation of Alpine glacier water resources and their change since the 1870’s. Int Assoc Hydrol Sci Publ 193:127–135

    Google Scholar 

  • Clarke GKC, Anslow FS, Jarosch AH, Radić V, Menounos B, Bolch T, Berthier E (2012) Ice volume and subglacial topography for western Canadian glaciers from mass balance fields, thinning rates, and a bed stress model. J Climate. doi:10.1175/JCLI-D-12-00513.1

    Google Scholar 

  • Cogley JG (2009a) A more complete version of the World Glacier Inventory. Ann Glaciol 50(53):32–38

    Article  Google Scholar 

  • Cogley JG (2009b) Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann Glaciol 50(50):96–100

    Article  Google Scholar 

  • Cogley JG et al (2011) Glossary of glacier mass balance and related terms. UNESCO-IHP

  • Columbus J, Sirguey P, Tenzer R (2011) A free, fully assessed 15-m DEM for New Zealand. Survey Q 66:16–19

    Google Scholar 

  • de Woul M, Hock R (2005) Static mass balance sensitivity of Arctic glaciers and ice caps using a degree-day approach. Ann Glaciol 42:217–224

    Article  Google Scholar 

  • Dowdeswell JA, Benham TJ, Strozzi T, Hagen O (2008) Iceberg calving flux and mass balance of the Austfonna ice cap on Nordaustlandet, Svalbard. J Geophys Res 113:F03022

    Article  Google Scholar 

  • Dyurgerov MB (2010) Reanalysis of glacier changes: from the IGY to the IPY, 1960–2008. Data Glaciol Stud 108:1–116

    Google Scholar 

  • Dyurgerov MB, Meier MF (2005) Glaciers and the changing earth system: a 2004 snapshot. INSTARR occasional paper 58, University of Colorado, Boulder

  • Gardner AS, Moholdt G, Cogley JG, Wouters B, Arendt AA, Wahr J, Berthier E, Hock R, Pfeffer WT, Kaser G, Ligtenberg SRM, Bolch T, Sharp MJ, Hagen JO, van den Broeke M, Paul F (2013) A consensus estimate of glacier contributions to sea level rise: 2003 to 2009. Science (accepted)

  • Hock R, de Woul M, Radić V, Dyurgerov M (2009) Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophys Res Lett 36:L07501. doi:10.1029/2008GL037020

    Article  Google Scholar 

  • Huss M (2011) Present and future contribution of glaciers to runoff from macroscale drainage basins in Europe. Water Resour Res 47:W07511. doi:10.1029/2010WR010299

    Article  Google Scholar 

  • Huss M, Funk M, Ohmura A (2009) Strong Alpine melt in the 1940s due to enhanced solar radiation. Geophys Res Lett 36:L23501

    Article  Google Scholar 

  • Huss M, Hock R, Bauder A, Funk M (2012) Conventional versus reference-surface mass balance. J Glaciol 58(208):278–286

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4. http://srtm.csi.cgiar.org. Accessed 29 February 2012

  • Kållberg PW, Simmons AJ, Uppala SM, Fuentes M (2004) The ERA-40 Archive. ERA-40 Project Report Series 17, ECMWF, Reading

  • Kaser G, Cogley JG, Dyurgerov MB, Meier MF, Ohmura A (2006) Mass balance of glaciers and ice caps: consensus estimates for 1961–2004. Geophys Res Lett 33. doi:10.1029/2006GL027511

  • Kaser G, Großhauser M, Marzeion B (2010) Contribution potential of glaciers to water availability in different climate regimes. PNAS 107:20223–20227

    Article  Google Scholar 

  • Liu HK, Jezek K, Li B, Zhao Z (2001) Radarsat Antarctic mapping project digital elevation model version 2, Digital media. National Snow and Ice Data Center, Boulder. http://nsidc.org/data/nsidc-0082.html

  • Lüthi MP (2009) Transient response of idealized glaciers to climate change. J Glaciol 55(193):918–930

    Article  Google Scholar 

  • Marzeion B, Jarosch AH, Hofer M (2012) Past and future sea-level change from the surface mass balance of glaciers. Cryosphere 6:1295–1322. doi:10.5194/tc-6-1295-2012

    Article  Google Scholar 

  • Meier MF, Dyurgerov MB, Rick UK, O’Neel S, Pfeffer WT, Anderson RS, Anderson SP, Glazovsky AF (2007) Glaciers dominate eustatic sea-level rise in 21st century. Science 317:1064–1067

    Article  Google Scholar 

  • Moss RH (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823

    Article  Google Scholar 

  • Paul F, Haeberli W (2008) Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models. Geophys Res Lett 35:L21502

    Article  Google Scholar 

  • Radić V, Hock R (2006) Modelling mass balance and future evolution of glaciers using ERA-40 and climate models—A sensitivity study at Storglaciären, Sweden. J Geophys Res 111:F03003

    Google Scholar 

  • Radić V, Hock R (2010) Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J Geophys Res 115:F01010. doi:10.1029/2009JF001373

    Google Scholar 

  • Radić V, Hock R (2011) Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nat Geosci 4:91–94. doi:10.1038/NGEO1052

    Article  Google Scholar 

  • Radić V, Hock R, Oerlemans J (2007) Volume-area scaling vs flowline modelling in glacier volume projections. Ann Glaciol 46:234–240

    Article  Google Scholar 

  • Radić V, Hock R, Oerlemans J (2008) Analysis of scaling methods in deriving future volume evolutions of valley glaciers. J Glaciol 54(187):601–612

    Article  Google Scholar 

  • Randall DA et al (2007) Climate models and their evaluation. In: Solomon S et al (eds) IPCC climate change 2007: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Raper SBC, Braithwaite RJ (2006) Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature 439:311–313. doi:10.1038/nature04448

    Article  Google Scholar 

  • Rastner PN, Mölg T, Machguth H, Paul F (2012) The first complete glacier inventory for the whole of Greenland. Cryosphere 6:1483–1495. doi:10.5194/tc-6-1483-2012

    Article  Google Scholar 

  • Schiefer E, Menounos B, Wheate R (2007) Recent volume loss of British Columbia glaciers, Canada. Geophys Res Lett 34:L16503

    Article  Google Scholar 

  • Slangen ABA, Katsman CA, van de Wal RSW, Vermeersen LLA, Riva REM (2012) Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios. Clim Dyn 38:1191–1209. doi:10.1007/s00382-011-1057-6

    Article  Google Scholar 

  • Tachikawa T, Hato M, Kaku M, Iwasaki A (2011) The characteristics of ASTER GDEM version 2, IGARSS

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Woodward J, Sharp M, Arendt A (1997) The influence of superimposed-ice formation on the sensitivity of glacier mass balance to climate change. Ann Glaciol 24:186–190

    Google Scholar 

  • Zwally HJ, Schutz R, Bentley C, Bufton J, Herring T, Minster J, Spinhirne J, Thomas R (2012) GLAS/ICESat L2 Antarctic and Greenland Ice Sheet Altimetry Data V001. Boulder, CO: National Snow and Ice Data Center. Digital media

Download references

Acknowledgments

Funding was provided by NASA grant (NNH10Z1A001N and NNX11AO23G) and NSF (grant EAR-0943742). We thank the two anonymous reviewers for their comments which helped us to significantly improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Radić.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radić, V., Bliss, A., Beedlow, A.C. et al. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Clim Dyn 42, 37–58 (2014). https://doi.org/10.1007/s00382-013-1719-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1719-7

Keywords

Navigation