Skip to main content

Advertisement

Log in

Assessing the effect of domain size over the Caribbean region using the PRECIS regional climate model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study investigates the sensitivity of the one-way nested PRECIS regional climate model (RCM) to domain size for the Caribbean region. Simulated regional rainfall patterns from experiments using three domains with horizontal resolution of 50 km are compared with ERA reanalysis and observed datasets to determine if there is an optimal RCM configuration with respect to domain size and the ability to reproduce important observed climate features in the Caribbean. Results are presented for the early wet season (May–July) and late wet season (August–October). There is a relative insensitivity to domain size for simulating some important features of the regional circulation and key rainfall characteristics e.g. the Caribbean low level jet and the mid summer drought (MSD). The downscaled precipitation has a systematically negative precipitation bias, even when the domain was extended to the African coast to better represent circulation associated with easterly waves and tropical cyclones. The implications for optimizing modelling efforts within resource-limited regions like the Caribbean are discussed especially in the context of the region’s participation in global initiatives such as CORDEX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adler R, Huffman G, Chang A, Ferraro R et al (2003) The Version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979—present). J Hydrometeor 4:1147–1167

    Article  Google Scholar 

  • Alfonso AP, Naranjo LR (1996) The 13 March 1993 severe squall line over Western Cuba. Weather Forecast 11:89–102

    Article  Google Scholar 

  • Amador JA (1998) A climatic feature of the tropical Americas: the trade wind easterly jet. Top Meteor Oceanogr 5:1–13

    Google Scholar 

  • Amador JA, Magaña VO (1999) Dynamics of the low level jet over the Caribbean sea. Preprints, 23rd conference on hurricanes and tropical meteorology. American Meteorological Society, Dallas, TX, pp 868–869

  • Amador JA, Magaña VO, Pérez JB (2000) The low level jet and convective activity in the Caribbean. Preprints 24th conference in hurricanes and tropical meteorology. American Meteorological Society, Fort Lauderdale, FL, pp 114–115

  • Beck C, Grieser J, Rudolf B (2005) A new monthly precipitation climatology for the global land areas for the period 1951 to 2000. DWD, Klimastatusbericht 2004:181–190

    Google Scholar 

  • Bhaskaran B, Jones RG, Murphy JM, Noguer M (1996) Simulations of the Indian summer monsoon using a nested regional climate model: domain size experiments. Clim Dyn 12:573–587

    Article  Google Scholar 

  • Campbell JD, Taylor MA, Stephenson TS, Watson RA, Whyte FS (2010) Future climate of the Caribbean from a regional climate model. Int J Climatol. doi:10.1002/joc.2200

  • Centella A, Bezanilla A, Leslie K (2008) A study of the uncertainty in future Caribbean climate using the PRECIS regional climate model. Technical Report. Community Caribbean Climate Change Center, Belmopan, 16 pp

  • Chen AA, Taylor MA (2002) Investigating the link between early season Caribbean rainfall and the El Niño +1 year. Int J Climatol 22:87–106

    Article  Google Scholar 

  • Chen AA, Roy A, McTavish J, Taylor MA, Marx L (1997) Using SST anomalies to predict flood and drought conditions for the Caribbean. COLA Report 49

  • Christensen J, Machenhauer HB, Jones RG, Shär C, Ruti PM, Castro M, Visconti G (1997) Validation of present-day climate simulations over Europe: LAM simulations with observed boundary conditions. Clim Dyn 13:489–506

    Article  Google Scholar 

  • Colin J, Déqué M, Radu R, Somot S (2010) Sensitivity study of heavy precipitation in limited area model climate simulations: influence of the size of the domain and the use of the spectral nudging technique. Tellus A 62:591–604. doi:10.1111/j.1600-0870.2010.00467.x

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. QJR Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Denis B, Laprise R, Caya D, Cote J (2002) Downscaling ability of one-way nested regional climate models: the big-brother experiment. Clim Dyn 18:627–646

    Article  Google Scholar 

  • Diro GT, Rausher SA, Giorgi F, Tompkins AM (2012) Sensitivity of seasonal climate and diurnal precipitation over Central America to land and sea surface schemes in RegCM4. Clim Res 52:31–48

    Article  Google Scholar 

  • Gamble DW, Curtis S (2008) Caribbean precipitation: review, model and prospect. Prog Phys Geography 32(3):265–276

    Article  Google Scholar 

  • Giannini A, Kushnir Y, Cane MA (2000) Inter-anual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J Clim 13:297–311

    Article  Google Scholar 

  • Giorgi F, Mearns L (1999) Regional climate modeling revisited. J Geophys Res 104:6335–6352

    Article  Google Scholar 

  • Granger OE (1985) Caribbean climates. Prog Phys Geography 9:16–43

    Article  Google Scholar 

  • Hastenrath S (1966) On general circulation and energy budget in the area of the Central American seas. J Atmos Sci 23:694–711

    Article  Google Scholar 

  • Hastenrath S (1967) Rainfall distribution and regimes in Central America. Arch Meteor Geophys Bioclimatol Ser B 15:201–241

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Morrissey MM, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeor 2:36–50

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Stocker EF, Wolff DB (2007) The TRMM multi-satellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J Hydrometeor 8:33–55

    Article  Google Scholar 

  • Huntingford C, Jones RG, Prudhomme C, Lamb R, Gash JH, Jones A (2003) Regional climate-model predictions of extreme rainfall for a changing climate. QJR Meteorol Soc 129:1607–1621

    Article  Google Scholar 

  • Inoue M, Handoh IC, Bigg GR (2002) Bimodal distribution of tropical cyclogenesis in the Caribbean: characteristics and environmental factors. J Clim 15:2897–2905

    Article  Google Scholar 

  • IPCC (2007) Climate change (2007): the physical science basis. Contribution of working group I (WGI) to the fourth assessment report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) [Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds)]. Cambridge University Press, Cambridge

  • Jacob D, Podzun R (1997) Sensitivity studies with the regional climate model REMO. Meteorol Atmos Phys 63:119–129

    Article  Google Scholar 

  • Jones RG, Murphy JM, Noguer M (1995) Simulation of climate change over Eure using a nested regional climate model. Part I: assessment of control climate, including sensitivity to location of lateral boundaries. QJR Meteorol Soc 121:1413–1449

    Google Scholar 

  • Jones RG, Murphy JM, Noguer M, Keen AB (1997) Simulation of climate change over Europe using a nested regional-climate model. Part II: comparison of driving and regional model responses to a doubling of carbon dioxide. QJR Meteorol Soc 123:265–292

    Google Scholar 

  • Jones RG, Noguer M, Hassel D, Hudson D, Wilson S, Jenkins G, Mitchell J (2004) Generating high resolution climate change scenarios using HadRM3P. Met Office Hadley Centre Report, p 40

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki M, Higgins M, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471

    Article  Google Scholar 

  • Kanamitsu M, Ebisuaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP/DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Karmalkar AV, Bradley RS, Diaz HF (2008) Climate change scenario for Costa Rican montane forests. Geophys Res Lett 35:L11702

    Article  Google Scholar 

  • Karmalkar AV, Taylor MA, Campbell J, Stephenson T, New M, Centella A, Bezanilla A, Charlery J (2012) A review of observed and projected changes in climate for the islands in the Caribbean. Atmos 26:283–309

    Google Scholar 

  • Magaña V, Amador JA, Medina S (1999) The midsummer drought over Mexico and Central America. J Clim 12:1577–1588

    Article  Google Scholar 

  • Martinez-Castro D, Porfirio da Rocha R, Bezanilla-Morlot A, Alvarez-Escudero L, Reyes-Fernandez JP, Silva-Vidal Y, Arritt RW (2006) Sensitivity studies of the RegCM3 simulation of summer precipitation, temperature and local wind field in the Caribbean region. Theoret Appl Climatol 86:5–22

    Article  Google Scholar 

  • Matsuura K, Willmott (2007) Terrestrial precipitation: 1900–2006 gridded monthly time series (version 1.01). http://climate.geog.udel.edu/~climate/html_pages/Global_ts_2007/README.global.p_ts_2007html

  • Mesinger F et al (2006) North American regional reanalysis. Bull Am Meteorol Soc 87:343–360

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  • Rauscher SA, Giorgi F, Diffenbaugh NS, Seth A (2008) Extension and Intensification of the Meso-American mid-summer drought in the twenty-first century. Clim Dyn 31:551–571

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Riehl H (1979) Climate and weather in the tropics. Academic Press, London, p 595

    Google Scholar 

  • Rossow WB, Schiffer RA (1991) ISCCP cloud data products. Bull Am Meteorol Soc 72:2–20

    Article  Google Scholar 

  • Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M, Reichstein M, Sorteberg A, Vera C, Zhang X (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the Intergovernmental Panel on Climate Change, pp 109–230

  • Seth A, Giorgi F (1998) The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model. J Clim 11:2698–2712

    Article  Google Scholar 

  • Simmons AJ, Burridge DM (1981) An energy and angular-momentum conserving vertical finite difference scheme and hybrid vertical coordinates. Mon Weather Rev 109:758–766

    Article  Google Scholar 

  • Simmons A, Dee D, Uppala S, Kobayashi S (2007) Era-interim: new ECMWF reanalysis products from 1989 onwards. In: ECMWF Newsl, 110. ECMWF, pp 29–35

  • Stephenson TS, Chen AA, Taylor MA (2007) Toward the development of prediction models for the primary Caribbean dry season. Theoret Appl Climatol 92:87–101

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192

    Article  Google Scholar 

  • Taylor MA, Enfield DB, Chen AA (2002) The influence of the tropical Atlantic vs. the tropical Pacific on Caribbean rainfall. J Geophys Res 107(C9):3127. doi:10.1029/2001JC001097

    Article  Google Scholar 

  • Taylor MA, Stephenson TS, Owino A, Chen AA, Campbell JD (2011) Tropical gradient influences on Caribbean rainfall. J Geophys Res. doi:10.1029/2010JD015580

    Google Scholar 

  • Taylor MA, Centella A, Charlery J, Bezanilla A, Campbell JD, Borrajero I, Stephenson TS, Nurmohamed R (2013) The precis Caribbean story: lessons and legacies. Bull Am Meteorol Soc 94:1065–1073

    Article  Google Scholar 

  • Tourigny E, Jones CG (2009) An analysis of regional climate model performance over the tropical Americas. I. Simulating seasonal variability of precipitation associated with ENSO forcing. Tellus Ser A 61:323–342

    Article  Google Scholar 

  • Wang C (2007) Variability of the Caribbean low-level jet and its relations to climate. Clim Dyn 29:411–422

    Article  Google Scholar 

  • Wang C, Lee SK (2007) Atlantic warm pool, Caribbean low-level jet and their potential impact on Atlantic hurricanes. Geophys Res Lett 34:L02703

    Google Scholar 

  • Whyte FS, Taylor MA, Stephenson TS, Campbell JD (2008) Features of the Caribbean low level jet. Int J Climatol 28:119–128

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78(11):2539–2558

    Article  Google Scholar 

Download references

Acknowledgments

This work was conducted as part of a collaborative effort between Instituto de Meteorologia (Cuba), the Climate Studies Group Mona (CSGM) of the University of the West Indies (Jamaica), the Cave Hill campus of the University of the West Indies (Barbados) and the Antom de Kom University (Suriname) under the Caribbean Modelling Initiative. The collaboration was funded by the Caribbean Community Climate Change Centre (Belize) and the Climate Change Adaptation and Mitigation Research Program of the Ministry of Science, Technology and Environment (CITMA) of Cuba. INSMET’s participation was partially funded by the Climate and Development Knowledge Network (CDKN) project CARIWIG and by the ‘The Future of Climate Extremes in the Caribbean’ (XCUBE). XCUBE is a joint project between Norway and Cuba funded by the Direktoratet for samfunnssikkerhet og beredskap (DSB) on an assignment for the Norwegian Ministry of Foreign Affairs. The CSGM participation was partially funded by the GoLoCarSce project under the ACP-EU Science and Technology Programme. Special thanks to Dr. Richard G. Jones for instructive comments. Thanks also to the Hadley Centre (UK) for PRECIS model support. Thanks to the anonymous reviewers whose helpful comments allowed us to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel Centella-Artola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Centella-Artola, A., Taylor, M.A., Bezanilla-Morlot, A. et al. Assessing the effect of domain size over the Caribbean region using the PRECIS regional climate model. Clim Dyn 44, 1901–1918 (2015). https://doi.org/10.1007/s00382-014-2272-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2272-8

Keywords

Navigation