Skip to main content

Advertisement

Log in

On the response of Indian summer monsoon to aerosol forcing in CMIP5 model simulations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Indo-Gangetic plains (IGP), which hosts 1/7th of the world population, has undergone significant anomalous changes in hydrological cycle in recent decades. In present study, the role of aerosols in the precipitation changes over IGP region is investigated using Coupled Model Inter-comparison Project-5 (CMIP5) experiments with adequate representation of aerosols in state-of-the art climate models. The climatological sea surface temperature experiments are used to explore the relative impact of the aerosols. The diagnostic analysis on representation of aerosols and precipitation over Indian region was investigated in CMIP5 models. After the evaluation, multi-model ensemble was used for further analysis. It is revealed from the analysis that aerosol-forcing plays an important role in observed weakening of the monsoon circulation and decreased precipitation over the IGP region. The significant cooling of the continental Indian region (mainly IGP) caused by the aerosols leads to reduction in land sea temperature contrast, which further leads to weakening of monsoon overturning circulation and reduction in precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Albrecht BA (1989) Fractional cloudiness. Science 245(80):1227–1230

    Article  Google Scholar 

  • Andrews T (2013) Using an AGCM to diagnose historical effective radiative forcing and mechanisms of recent decadal climate change. J Clim. doi:10.1175/JCLI-D-13-00336.1

    Google Scholar 

  • Bellouin N, Collins WJ, Culverwell ID et al (2011) The HadGEM2 family of Met Office Unified Model climate configurations. Geosci Model Dev 4:723–757. doi:10.5194/gmd-4-723-2011

    Article  Google Scholar 

  • Bollasina M, Ramaswamy V, Ming Y (2011) Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334(80):502–505. doi:10.1126/science.1204994

    Article  Google Scholar 

  • Cherian R, Venkataraman C, Quaas J, Ramachandran S (2013) GCM simulations of anthropogenic aerosol-induced changes in aerosol extinction, atmospheric heating and precipitation over India. J Geophys Res Atmos 118:2938–2955. doi:10.1002/jgrd.50298

    Article  Google Scholar 

  • Chung CE, Ramanathan V (2006) Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. J Clim 19:2036–2045

    Article  Google Scholar 

  • Donner LJ, Wyman BL, Hemler RS et al (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3. J Clim 24:3484–3519. doi:10.1175/2011JCLI3955.1

    Article  Google Scholar 

  • Dufresne J-L, Foujols M-A, Denvil S et al (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn 40:2123–2165. doi:10.1007/s00382-012-1636-1

    Article  Google Scholar 

  • Ganguly D, Rasch PJ, Wang H, Yoon J (2012a) Fast and slow responses of the South Asian monsoon system to anthropogenic aerosols. Geophys Res Lett. doi:10.1029/2012GL053043

  • Ganguly D, Rasch PJ, Wang H, Yoon J-H (2012b) Climate response of the South Asian monsoon system to anthropogenic aerosols. J Geophys Res 117:D13209. doi:10.1029/2012JD017508

    Article  Google Scholar 

  • Garg A, Shukla PR, Bhattacharya S, Dadhwal VK (2001) Sub-region (district) and sector level SO and NO emissions for India: assessment of inventories and mitigation flexibility. Atmos Environ 35:703–713

    Article  Google Scholar 

  • Goswami BN, Venugopal V, Sengupta D et al (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314(80):1442–1445

    Article  Google Scholar 

  • Guhathakurta P, Sreejith OP, Menon PA (2011) Impact of climate change on extreme rainfall events and flood risk in India. J Earth Syst Sci 120:359–373. doi:10.1007/s12040-011-0082-5

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response abstract. We examine the sensitivity of a climate model to a wide range of radiative including changes of solar forcing introduced times the climate response, specifically the global mean temperature change, is se. J Geophys Res Atmos 102:6831–6864

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R et al (2005) Efficacy of climate forcings. J Geophys Res. doi:10.1029/2005JD005776

    Google Scholar 

  • Huffman GJ, Adler RF, Arkin P, et al (1997) The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull Am Meteorol Soc 78:5–20

    Article  Google Scholar 

  • Jha S, Sehgal VK, Raghava R, Sinha M (2013) Trend of standardized precipitation index during Indian summer monsoon season in agroclimatic zones of India. Earth Syst Dyn Discuss 4:429–449. doi:10.5194/esdd-4-429-2013

    Article  Google Scholar 

  • Joseph PV, Simon A (2005) Weakening trend of the southwest monsoon current through peninsular India from 1950 to the present. Curre 89:687–694

    Google Scholar 

  • Kaufman YJ, Tanré D, Boucher O (2002) In the climate system. Nature 419:215–223

    Article  Google Scholar 

  • Kirkevåg A, Iversen T, Seland Ø et al (2013) Aerosol–climate interactions in the Norwegian Earth System Model—NorESM1-M. Geosci Model Dev 6:207–244. doi:10.5194/gmd-6-207-2013

    Article  Google Scholar 

  • Kothawale DR, Kumar KK, Srinivasan G (2012) Spatial asymmetry of temperature trends over India and possible role of aerosols. Theor Appl Climatol 110:263–280. doi:10.1007/s00704-012-0628-8

    Article  Google Scholar 

  • Krishnan R, Ramanathan V (2002) Evidence of surface cooling from absorbing aerosols. Geophys Res Lett 29:2–5

    Article  Google Scholar 

  • Krishnan R, Sabin TP, Ayantika DC, et al (2013) Will the South Asian monsoon overturning circulation stabilize any further ? doi:10.1007/s00382-012-1317-0

  • Lau K-M, Kim K-M (2006) Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys Res Lett 33:L21810. doi:10.1029/2006GL027546

    Article  Google Scholar 

  • Li H, Zhaou TLC (2010) Decreasing trend in global land monsoon precipitation over the past 50 years simulated by a coupled climate model. Adv Atmos Sci 27:285–292. doi:10.1007/s00376-009-8173-9.1.Introduction

    Article  Google Scholar 

  • Manoj MG, Devara PCS, Safai PD, Goswami BN (2010) Absorbing aerosols facilitate transition of Indian monsoon breaks to active spells. Clim Dyn 37:2181–2198. doi:10.1007/s00382-010-0971-3

    Article  Google Scholar 

  • Martins J, Tanré D, Remer L (2002) MODIS cloud screening for remote sensing of aerosols over oceans using spatial variability. Geophys Res 29:3–6

    Google Scholar 

  • Meehl G, Arblaster J, Collins W (2008) Effects of black carbon aerosols on the Indian monsoon. J Clim. doi:10.1175/2007JCLI1777.1

    Google Scholar 

  • Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253. doi:10.1126/science.1075159

    Article  Google Scholar 

  • Nigam S, Zhao Y, Ruiz-Barradas A, Zhou T (2013) The south-flood north-drought pattern over the Eastern China and the drying of the Gangetic plains: observations, simulations and origin. In: Ghil M, Latif M, Wallace M, Chang CP (eds) Climate change: multidecadal and beyond. World press

  • Platnick S, King MD, Ackerman SA, Menzel WP, Baum BA, Riedi JC, Frey RA (2003) The MODIS cloud products: algorithms and examples from Terra. IEEE Trans Geosci Remote Sens 41(2):459–473

    Article  Google Scholar 

  • Rajeevan M, Bhate J, Jaswal AK (2008) Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. 35:1–6. doi:10.1029/2008GL035143

  • Ramachandran S, Cherian R (2008) Regional and seasonal variations in aerosol optical characteristics and their frequency distributions over India during 2001–2005. J Geophys Res 113:D08207. doi:10.1029/2007JD008560

    Google Scholar 

  • Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nature 1:221–227

    Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294:2119–2124. doi:10.1126/science.1064034

    Article  Google Scholar 

  • Ramanathan V, Chung C, Kim D et al (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci USA 102:5326–5333. doi:10.1073/pnas.0500656102

    Article  Google Scholar 

  • Ramanathan V, Li F, Ramana MV et al (2007) Atmospheric brown clouds: hemispherical and regional variations in long-range transport, absorption, and radiative forcing. J Geophys Res 112:D22S21. doi:10.1029/2006JD008124

    Google Scholar 

  • Rao BRS, Bhaskar Rao DV, Rao VB (2004) Decreasing trend in the strength of tropical easterly jet during the Asian summer monsoon season and the number of tropical cyclonic systems over Bay of Bengal. Geophys Res Lett 31:L14103. doi:10.1029/2004GL019817

    Article  Google Scholar 

  • Remer LA, Mattoo S, Levy RC et al (2012) Retrieving aerosol in a cloudy environment: aerosol product availability as a function of spatial resolution. Atmos Meas Tech 5:1823–1840. doi:10.5194/amt-5-1823-2012

    Article  Google Scholar 

  • Rotstayn LD, Jeffrey SJ, Collier MA et al (2012) Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations. Atmos Chem Phys 12:6377–6404. doi:10.5194/acp-12-6377-2012

    Article  Google Scholar 

  • Sajani S, Moorthy KK, Rajendran K, Nanjundiah RS (2012) Monsoon sensitivity to aerosol direct radiative forcing. J Earth Syst Sci 121:867–889

    Article  Google Scholar 

  • Sanap SD, Pandithurai G (2014) Inter-annual variability of aerosols and its relationship with regional climate over Indian subcontinent. Int J Climatol. doi: 10.1002/joc.4037

  • Sanap SD, Ayantika DC, Pandithurai G, Niranjan K (2014) Assessment of the aerosol distribution over Indian subcontinent in CMIP5 models. Atmos Environ 87:1–15. doi:10.1016/j.atmosenv.2014.01.017

    Article  Google Scholar 

  • Srinivasan J, Gadgil S (2002) Asian brown cloud—fact and fantasy. Curr Sci 83:586–592

    Google Scholar 

  • Srivastava HN, Dewan BN, Dikshit SK, Rao P, Singh GS, Rao KR (1992) Decadal trends in climate over India. Mausam 43:7–20

    Google Scholar 

  • Taylor KE (2001) Summerizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Twomey S (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152

    Article  Google Scholar 

  • Uppala SM, KÅllberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Vinoj V, Rasch PJ, Wang H, et al (2014) Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nat Geosci. doi:10.1038/NGEO2107

  • Watanabe M, Suzuki T, O’ishi R et al (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335. doi:10.1175/2010JCLI3679.1

    Article  Google Scholar 

  • Yukimoto S, Adachi Y, Hosaka M et al (2012) A new global climate model of the Meteorological Research Institute: MRI-CGCM3; model description and basic performance. J Meteorol Soc Japan 90A:23–64. doi:10.2151/jmsj.2012-A02

    Article  Google Scholar 

Download references

Acknowledgments

The Indian Institute of Tropical Meteorology (IITM) is supported by the Ministry of Earth Sciences, Govt. of India, New Delhi. The authors thank Prof. B.N. Goswami, Former Director, IITM and Dr. R. Krishnan, Executive Director of CCCR for the encouragement and support to carry out the present work. SDS is thankful to Mr. Ramarao and Miss Priya for scientific discussions. SDS is also thankful to Dr. Anoop Mahajan for training in Mendeley software which helped to arrange references systematically. The datasets from MODIS, MISR, ERA-40 and GPCP are acknowledged with thanks. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modeling, which is responsible for CMIP. We thank the climate modeling groups for producing and making available their model output.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Pandithurai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanap, S.D., Pandithurai, G. & Manoj, M.G. On the response of Indian summer monsoon to aerosol forcing in CMIP5 model simulations. Clim Dyn 45, 2949–2961 (2015). https://doi.org/10.1007/s00382-015-2516-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2516-2

Keywords

Navigation