Skip to main content

Advertisement

Log in

Convective and stratiform precipitation characteristics in an ensemble of regional climate model simulations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We apply a recently proposed algorithm for disaggregating observed precipitation data into predominantly convective and stratiform, and evaluate biases in characteristics of parameterized convective (subgrid) and stratiform (large-scale) precipitation in an ensemble of 11 RCM simulations for recent climate in Central Europe. All RCMs have a resolution of 25 km and are driven by the ERA-40 reanalysis. We focus on mean annual cycle, proportion of convective precipitation, dependence on altitude, and extremes. The results show that characteristics of total precipitation are often better simulated than are those of convective and stratiform precipitation evaluated separately. While annual cycles of convective and stratiform precipitation are reproduced reasonably well in most RCMs, some of them consistently and substantially overestimate or underestimate the proportion of convective precipitation throughout the year. Intensity of convective precipitation is underestimated in all RCMs. Dependence on altitude is also simulated better for stratiform and total precipitation than for convective precipitation, for which several RCMs produce unrealistic slopes. Extremes are underestimated for convective precipitation while they tend to be slightly overestimated for stratiform precipitation, thus resulting in a relatively good reproduction of extremes in total precipitation amounts. The results suggest that the examined ensemble of RCMs suffers from substantial deficiencies in reproducing precipitation processes and support previous findings that climate models’ errors in precipitation characteristics are mainly related to deficiencies in the representation of convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anagnostou EN (2004) A convective/stratiform precipitation classification algorithm for volume scanning weather radar observations. Meteorol Appl 11:291–300

    Article  Google Scholar 

  • Ban N, Schmiedli J, Schär C (2014) Evaluation of the convection-resolving regional climate modelling approach in decade-long simulations. J Geophys Res 119:7889–7907

    Google Scholar 

  • Boberg F, Berg P, Thejll P, Gutowski W, Christensen J (2010) Improved confidence in climate change projections of precipitation further evaluated using daily statistics from ENSEMBLES models. Clim Dyn 35:1509–1520

    Article  Google Scholar 

  • Bougeault P (1985) A simple parameterization of the large-scale effects of cumulus convection. Mon Weather Rev 113:2108–2121

    Article  Google Scholar 

  • Boyle J, Klein SA (2010) Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating for the TWP-ICE period. J Geophys Res 115:D23112

    Article  Google Scholar 

  • Brockhaus P, Lüthi D, Schär C (2008) Aspects of the diurnal cycle in a regional climate model. Meteorol Z 17:433–443. doi:10.1127/0941-2948/2008/0316

    Article  Google Scholar 

  • Christensen JH, Christensen OB, Lopez P, van Meijgaard E, Botzet M (1996) The HIRHAM4 regional atmospheric climate model. Scientific Report 96–4. Danish Meteorological Institute: Copenhagen, Denmark

  • Christensen JH, Kjellström E, Giorgi F, Lenderink G, Rummukainen M (2010) Weight assignment in regional climate models. Clim Res 44:179–194

    Article  Google Scholar 

  • Coles S (2001) An introduction to statistical modeling of extreme values. Springer, London

    Book  Google Scholar 

  • Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19:4605–4630

    Article  Google Scholar 

  • Dai A, Trenberth KE (2004) The diurnal cycle and its depiction in the community climate system model. J Clim 5:930–951

    Article  Google Scholar 

  • Déqué M, Rowell DP, Lüthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, de Castro M, van den Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change 81:53–70

    Article  Google Scholar 

  • Durman CF, Gregory JM, Hassel DC, Jones RG, Murphy JM (2001) Comparison of extreme European daily precipitation simulated by a global and regional model for present and future climate. Q J R Meteorol Soc 1127:1005–1015

    Article  Google Scholar 

  • Farda A, Štěpánek P, Halenka T, Skalák P, Belda M (2007) Model Aladin in climate mode forced with ERA-40 reanalysis (coarse resolution experiment). Meteorol J 10:123–130

    Article  Google Scholar 

  • Farda A, Deque M, Somot S, Horanyi A, Spiridonov V, Toth H (2010) Model Aladin as regional climate model for Central and Eastern Europe. Stud Geophys Geod 54:313–332

    Article  Google Scholar 

  • Fischer AM, Keller DE, Liniger MA, Rajczak J, Schär C, Appenzeller C (2014) Projected changes in precipitation intensity and frequency in Switzerland: a multi-model perspective. Int J Climatol, doi: 10.1002/joc.4162 (in press)

  • Fowler HJ, Ekström M, Blenkinsop S, Smith AP (2007) Estimating change in extreme European precipitation using a multimodel ensemble. J Geophys Res 112:D18104. doi:10.1029/2007JD008619

    Article  Google Scholar 

  • Frei C, Christensen J, Deque M, Jacob D, Jones R, Vidale P (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res 108:4124. doi:10.1029/2002JD002287

    Article  Google Scholar 

  • Gerard L, Geleyn J-F (2005) Evolution of a subgrid deep convection parametrization in a limited-area model with increasing resolution. Q J R Meteorol Soc 131:2293–2312. doi:10.1256/qj.04.72

    Article  Google Scholar 

  • Giorgi F, Bi X, Pal JS (2004) Mean, interannual variability and trends in a regional climate change experiment over Europe. I. Present day climate (1961–1990). Clim Dyn 22:733–756

    Article  Google Scholar 

  • Gregersen IB, Sørup HJD, Madsen H, Rosbjerg D, Mikkelsen PS, Arnbjerg-Nielsen K (2013) Assessing future climatic changes of rainfall extremes at small spatio-temporal scales. Clim Change 118:783–797. doi:10.1007/s10584-012-0669-0

    Article  Google Scholar 

  • Gregory D, Guichard F (2002) Aspects of the parametrization of organized convection: contrasting cloud-resolving model and single-column model realizations. Q J R Meteorol Soc 128:625–646. doi:10.1256/003590002321042126

    Article  Google Scholar 

  • Guichard F, Petch JC, Redelsperger J-L, Bechtold P, Chaboureaou J-P et al (2004) Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Q J R Meteorol Soc 130:3139–3172

    Article  Google Scholar 

  • Hagemann S, Arpe K, Bengtsson L (2005) Validation of the hydrological cycle of ERA40. Reports on Earth System Science 10, Max-Planck-Institute for Meteorology, Hamburg, ISSN 1614-1199

  • Hanel M, Buishand TA (2010) On the value of hourly precipitation extremes in regional climate model simulations. J Hydrol 393:265–273

    Article  Google Scholar 

  • Herrera S, Fita L, Fernández J, Gutiérrez JM (2010) Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulation over Spain. J Geophys Res 115:D21117

    Article  Google Scholar 

  • Hohenegger C, Brockhaus P, Schär C (2008) Towards climate simulations at cloud-resolving scales. Meteorol Z 17:383–394. doi:10.1127/0941-2948/2008/0303

    Article  Google Scholar 

  • Holtanová E, Mikšovský J, Kalvová J, Pišoft P, Motl M (2012) Performance of ENSEMBLES regional climate models over Central Europe using various metrics. Theor Appl Climatol 108:463–470

    Article  Google Scholar 

  • Hosking JRM, Wallis JR (1997) Regional frequency analysis. An approach based on L-moments. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Houze RAJ (1997) Stratiform precipitation in regions of convection: a meteorological paradox? Bull Am Meteorol Soc 78:2179–2196

    Article  Google Scholar 

  • Hu L, Li Y, Song Y, Deng D (2011) Seasonal variability in tropical and subtropical convective and stratiform precipitation of the East Asian monsoon. Sci China Earth Sci 54:1595–1603

    Article  Google Scholar 

  • Huff FA, Shipp WL (1969) Spatial correlations of storm, monthly, and seasonal precipitation. J Appl Meteorol 8:542–550

    Article  Google Scholar 

  • Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73

    Article  Google Scholar 

  • Jacob D, Bärring L, Christensen OB, Christensen JH, de Castro M et al (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81:31–52

    Article  Google Scholar 

  • Jaeger E, Anders I, Luthi D, Rockel B, Schar C, Seneviratne S (2008) Analysis of ERA40-driven CLM simulation for Europe. Meteorol Z 17:349–367

    Article  Google Scholar 

  • Kain JS, Fritsch JM (1993) Convective parameterization for mesoscale models: the Kain-Fritsch scheme. In: The representation of cumulus convection in numerical models. Meteor Monogr 24. American Meteorological Society, Boston, pp 165–170

  • Kendon EJ, Roberts NM, Senior CA, Roberts MJ (2012) Realism of rainfall in a very high resolution regional climate model. J Clim 25:5791–5806. doi:10.1175/JCLI-D-11-00562.1

    Article  Google Scholar 

  • Kendon EJ, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Senior C (2014) Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat Clim Change. doi:10.1038/nclimate2258

    Google Scholar 

  • Kjellström E, Barring L, Gollvik L, Hansson U, Jones C et al (2005) A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3). SMHI reports meteorology and climatology 108, SMHI, SE-60176. Norrköping, Sweden, p 54

    Google Scholar 

  • Kjellström E, Boberg F, Castro M, Christensen JH, Nikulin G, Sanchez E (2010) Daily and monthly temperature and precipitation statistics as performance indicators for regional climate models. Clim Res 44:135–150. doi:10.3354/cr00932

    Article  Google Scholar 

  • Klein Tank AMG, Wijngaard JB, Konnen GP, Bohm R, Demaree G et al (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22:1441–1453

    Article  Google Scholar 

  • Kyselý J, Beguería S, Beranová R, Gaál L, López-Moreno JI (2012) Different patterns of climate change scenarios for short-term and multi-day precipitation extremes in the Mediterranean. Glob Planet Change 98–99:63–72. doi:10.1016/j.gloplacha.2012.06.010

    Article  Google Scholar 

  • Lam HY, Luini L, Din J, Capsoni C, Panagopoulos AD (2010) Stratiform and convective rain discrimination for equatorial region. In: Proceedings of the 2010 IEEE student conference on research and development—engineering: innovation and beyond, SCOReD 2010, 112–116. doi:10.1109/SCORED.2010.5703983

  • Larsen MAD, Thejll P, Christensen JH, Refsgaard JC, Jensen KH (2013) On the role of domain size and resolution in the simulations with the HIRHAM region climate model. Clim Dyn 40:2903–2918. doi:10.1007/s00382-012-1513-y

    Article  Google Scholar 

  • Lee M-I, Schubert SD, Suarez MJ, Held IM, Kumar A, Bell TL, Schemm JKE, Lau NC, Ploshay JJ, Kim HK, Yoo SH (2007) Sensitivity to horizontal resolution in the AGCM simulations of warm season diurnal cycle of precipitation over the United States and northern Mexico. J Climate 20:1862–1881

    Article  Google Scholar 

  • Lenderink G, van Meijgaard E (2008) Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat Geosci 1:511–514. doi:10.1038/ngeo262

    Article  Google Scholar 

  • Lenderink G, van der Hurk B, van Meijgaard E, van Ulden A, Cuijpers H (2003) Simulation of present day climate in RACMO2: first results and model developments. KNMI, Technical Report 252, 24 pp

  • Li F, Collins WD, Wehner MF, Williamson DL, Olson JG, Algieri C (2011) Impact of horizontal resolution on simulation of extremes in an aqua-planet version of Community Atmospheric Model (CAM3). Tellus 63A:884–892

    Article  Google Scholar 

  • Maraun D, Osborn TJ, Rust HW (2012) The influence of synoptic airflow on UK daily precipitation extremes. Part II: regional climate model and E-OBS data validation. Clim Dyn 39:287–301. doi:10.1007/s00382-011-1176-0

    Article  Google Scholar 

  • May W (2007) The simulation of the variability and extremes of daily precipitation over Europe by the HIRHAM regional climate model. Glob Planet Change 57:59–82. doi:10.1016/j.gloplacha.2006.11.026

    Article  Google Scholar 

  • Molinari J, Dudek M (1992) Parameterization of convective precipitation in mesoscale numerical models: a critical review. Mon Weather Rev 120:326–344

    Article  Google Scholar 

  • Noguer M, Jones RG, Murphy JM (1998) Sources of systematic errors in the climatology of a regional climate model over Europe. Clim Dyn 14:691–712

    Article  Google Scholar 

  • Overeem A, Buishand TA, Holleman I, Uijlenhoet R (2010) Extreme value modelling of areal rainfall from weather radar. Water Resour Res 46:W09514. doi:10.1029/2009WR008517

    Google Scholar 

  • Plavcová E, Kyselý J, Štěpánek P (2014) Links between circulation types and precipitation in Central Europe in the observed data and regional climate model simulations. Int J Climatol 34:2885–2898. doi:10.1002/joc.3882

    Google Scholar 

  • Radu R, Déqué M, Somot S (2008) Spectral nudging in a spectral regional climate model. Tellus 60A:898–910

    Article  Google Scholar 

  • Rauscher SA, Coppola E, Piani C, Giorgi F (2010) Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Clim Dyn 35:685–711

    Article  Google Scholar 

  • Řezáčová D, Pešice P, Sokol Z (2005) An estimation of the PMP for river basins in the Czech Republic. Atmos Res 77:407–421

    Article  Google Scholar 

  • Rulfová Z, Kyselý J (2013) Disaggregating convective and stratiform precipitation from station weather data. Atmos Res 134:100–115

    Article  Google Scholar 

  • Sanchéz E, Gallardo C, Gaertner MA, Arribas A, Castro M (2004) Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Glob Planet Change 44:163–180

    Article  Google Scholar 

  • Schumacher C, Houze RA (2003) Stratiform rain in the tropics as seen by the TRMM precipitation radar. J Clim 16:1739–1756

    Article  Google Scholar 

  • Sempere-Torres D, Sanchez-Diezma R, Zawadzki I, Creutin JD (2000) Identification of stratiform and convective areas using radar data with application to the improvement of DSD analysis and Z-R relations. Phys Chem Earth 25:985–990

    Article  Google Scholar 

  • Skalák P, Déqué M, Belda M, Farda A, Halenka T, Csima G, Bartholy J, Caian M, Spiridonov V (2014) CECILIA regional climate simulations for present climate—validation and inter-comparison. Clim Res. doi:10.3354/cr01207

    Google Scholar 

  • Skaugen T (1997) Classification of rainfall into small- and large-scale events by statistical pattern recognition. J Hydrol 200:40–57. doi:10.1016/S0022-1694(97)00003-6

    Article  Google Scholar 

  • Svensson C, Jones DA (2010) Review of methods for deriving areal reduction factors. J Flood Risk Manag 3:232–245

    Article  Google Scholar 

  • Swann H (2001) Evaluation of the mass-flux approach to parametrizing deep convection. Q J R Meteorol Soc 127:1239–1260

    Article  Google Scholar 

  • Tao W-K, Lang S, Simpson J, Olson WS, Johnson D, Ferrier B, Kummerow C, Adler R (2000) Vertical profiles of latent heat release and their retrieval for TOGA COARE convective systems using a cloud resolving model, SSM/I, and ship-borne radar data. J Meteorol Soc Jpn 78:333–355

    Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800

    Article  Google Scholar 

  • Tolasz R et al (2007) Climate Atlas of Czechia. Czech Hydrometeorological Institute and Palacký University, Prague and Olomouc

    Google Scholar 

  • Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Bechtold VDC et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Wakazuki Y, Nakamura M, Kanada S, Muroi C (2008) Climatological reproducibility evaluation and future climate projection of extreme precipitation events in the baiu season using a high-resolution non-hydrostatic RCM in comparison with an AGCM. J Meteorol Soc Jpn 86:951–967

    Article  Google Scholar 

  • Wilks DS (1995) Statistical methods in the atmospheric science. Academic Press, San Diego, p 467

  • Williamson DL (2013) The effect of time steps and time-scales on parametrization suites. Q J R Meteorol Soc 139:548–560. doi:10.1002/qj.1992

    Article  Google Scholar 

  • Zadra A, Caya D, Cote J, Dugas B, Jones C, Laprise R, Winger K, Caron L-P (2008) The next Canadian regional climate model. Phys Can 64:75–83

    Google Scholar 

Download references

Acknowledgments

The study was supported by the Czech Science Foundation under project 14-18675S. Z. Rulfová was supported also by the Charles University in Prague, student project GA UK No. 851713. The RCM data were obtained from the ENSEMBLES project database funded within the EU-FP6 (http://ensemblesrt3.dmi.dk/). We thank anonymous reviewers for insightful comments that helped improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kyselý.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyselý, J., Rulfová, Z., Farda, A. et al. Convective and stratiform precipitation characteristics in an ensemble of regional climate model simulations. Clim Dyn 46, 227–243 (2016). https://doi.org/10.1007/s00382-015-2580-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2580-7

Keywords

Navigation