Skip to main content

Advertisement

Log in

Impacts of Indian and Atlantic oceans on ENSO in a comprehensive modeling framework

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The impact of the Indian and Atlantic oceans variability on El Niño–Southern-Oscillation (ENSO) phenomenon is investigated through sensitivity experiments with the SINTEX-F2 coupled model. For each experiment, we suppressed the sea surface temperature (SST) variability in either the Indian or Atlantic oceans by applying a strong nudging of the SST toward a SST climatology computed either from a control experiment or observations. In the sensitivity experiments where the nudging is done toward a control SST climatology, the Pacific mean state and seasonal cycle are not changed. Conversely, nudging toward an observed SST climatology in the Indian or Atlantic domain significantly improves the mean state and seasonal cycle, not only in the nudged domain, but also in the whole tropics. These experiments also demonstrate that decoupling the Indian or Atlantic variability modifies the phase-locking of ENSO to the annual cycle, influences significantly the timing and processes of ENSO onset and termination stages, and, finally, shifts to lower frequencies the main ENSO periodicities. Overall, these results suggest that both the Indian and Atlantic SSTs have a significant damping effect on ENSO variability and promote a shorter ENSO cycle. The reduction of ENSO amplitude is particularly significant when the Indian Ocean is decoupled, but the shift of ENSO to lower frequencies is more pronounced in the Atlantic decoupled experiments. These changes of ENSO statistical properties are related to stronger Bjerknes and thermocline feedbacks in the nudged experiments. During the mature phase of El Niño events, warm SST anomalies are found over the Indian and Atlantic oceans in observations or the control run. Consistent with previous studies, the nudged experiments demonstrate that these warm SSTs induce easterly surface wind anomalies over the far western equatorial Pacific, which fasten the transition from El Niño to La Niña and promote a shorter ENSO cycle in the control run. These results may be explained by modulations of the Walker circulation induced directly or indirectly by the Indian and Atlantic SSTs. Another interesting result is that decoupling the Atlantic or Indian oceans change the timing of ENSO onset and the relative role of other ENSO atmospheric precursors such as the extra-tropical Pacific Meridional Modes or the Western North Pacific SSTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alexander MA et al (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15:2205–2231

    Article  Google Scholar 

  • Barnett TP (1983) Interaction of the monsoon and Pacific trade wind system at interannual time scales. Part I: the equatorial zone. Mon Weather Rev 111:756–773

    Article  Google Scholar 

  • Boschat G, Terray P, Masson S (2013) Extratropical forcing of ENSO. Geophys Res Lett 40:1–7. doi:10.1002/grl.50229

    Article  Google Scholar 

  • Bretherton C, Smith C, Wallace J (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560

    Article  Google Scholar 

  • Burgers G, Jin F-F, Oldenborgh GJ (2005) The simplest ENSO recharge oscillator. Geophys Res Lett 32:L13706. doi:10.1029/2005GL022951

    Article  Google Scholar 

  • Chang P, Fang Y, Saravannan R, Li L, Seidel H (2006) The cause of the fragile relationship between the Pacific El Niño and the Atlantic El Niño. Nature 443:324–328

    Article  Google Scholar 

  • Chang P, Zhang L, Saravanan R, Vimont DJ, Chiang JCH, Ji L, Seidel H, Tippett MK (2007) Pacific meridional mode and El Niño—Southern oscillation. Geophys Res Lett 34:L16608. doi:10.1029/2007GL030302

    Google Scholar 

  • Chikamoto Y, Kimoto M, Watanabe M, Ishii M, Mochizuki T (2012) Relationship between the Pacific and Atlantic stepwise climate change during the 1990s. Geophys Res Lett. doi:10.1029/2012GL053901

    Google Scholar 

  • Clarke AJ (2008) An introduction to the dynamics of El Niño and the Southern Oscillation. Academic Press, London

    Google Scholar 

  • Clarke AJ, Van Gorder S (2003) Improving El Niño prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophys Res Lett 30:1399

    Article  Google Scholar 

  • Dayan H, Vialard J, Izumo T, Lengaigne M (2013) Does sea surface temperature outside the tropical Pacific contribute to enhanced ENSO predictability? Clim Dyn. doi:10.1007/s00382-013-1946-y

    Google Scholar 

  • Dayan H, Izumo T, Vialard J, Lengaigne M, Masson S (2014) Do regions outside the tropical Pacific influence ENSO through atmospheric teleconnections? Clim Dyn. doi:10.1007/s00382-014-2254-x

    Google Scholar 

  • Ding H, Keenlyside NS, Latif M (2012) Impact of the equatorial Atlantic on the El Niño Southern Oscillation. Clim Dyn 38:1965–1972. doi:10.1007/s00382-011-1097-y

    Article  Google Scholar 

  • Ding R, Li J, Tseng Y-H (2014) The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Clim Dyn. doi:10.1007/s00382-014-2303-5

    Google Scholar 

  • Dominiak S, Terray P (2005) Improvement of ENSO prediction using a linear regression model with a southern Indian Ocean sea surface temperature predictor. Geophys Res Lett 32:L18702. doi:10.1029/2005GL023153

    Article  Google Scholar 

  • Dommenget D, Semenov V, Latif M (2006) Impacts of the tropical Atlantic and Indian Ocean on ENSO. Geophys Res Lett 33:L11701. doi:10.1029/2006GL025871

    Article  Google Scholar 

  • Ebisuzaki W (1997) A method to estimate the statistical significance of a correlation when the data are serially correlated. J Clim 10:2147–2153

    Article  Google Scholar 

  • Fischer A, Terray P, Guilyardi E, Gualdi S, Delecluse P (2005) Two independent triggers for the Indian Ocean Dipole/Zonal Mode in a coupled GCM. J Clim 18:3428–3449. doi:10.1175/JCLI3478.1

    Article  Google Scholar 

  • Frauen C, Dommenget D (2012) Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys Res Lett 39:L02706. doi:10.1029/2011GL050520

    Article  Google Scholar 

  • Guilyardi E, Braconnot P, Jin FF, Kim ST, Kolasinski M, Li T, Musat I (2009) Atmosphere feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. J Clim 22:5698–5718

    Article  Google Scholar 

  • Ham Y-Y, Kug J-S, Park JY, Jin F-F (2013a) Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat Geosci. doi:10.1038/NGEO1686

    Google Scholar 

  • Ham Y-Y, Kug J-S, Park JY, Jin F-F (2013b) Two distinct roles of Atlantic SSTs in ENSO variability: north tropical Atlantic SST and Atlantic Niño. Geophys Res Lett 40:4012–4017. doi:10.1002/grl50729

    Article  Google Scholar 

  • Izumo T, Vialard J, Lengaigne M, de Boyer Montegut C, Behera SK, Luo JJ, Cravatte S, Masson S, Yamagata T (2010) Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat Geosci 3:168–172. doi:10.1038/ngeo760

    Article  Google Scholar 

  • Jansen MF, Dommenget D, Keenlyside N (2009) Tropical atmosphere–ocean interactions in a conceptual framework. J Clim 22:550–567. doi:10.1175/2008JCLI2243.1

    Article  Google Scholar 

  • Jha B, Hu Z-Z, Kumar A (2013) SST and ENSO variability and change simulated in historical experiments of CMIP5 models. Clim Dyn. doi:10.1007/s00382-013-1803-z

    Google Scholar 

  • Jin FF (1997) An equatorial recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Jin D, Kirtman BP (2009) Why the Southern Hemisphere ENSO responses lead ENSO? J Geophys Res 114:D23101. doi:10.1029/2009JD012657

    Article  Google Scholar 

  • Jin F-F, Kim ST, Bejarano L (2006) A coupled-stability index for ENSO. Geophys Res Lett 33:L23708–L23718

    Article  Google Scholar 

  • Keenlyside NS, Ding H, Latif M (2013) Potential of equatorial Atlantic variability to enhance El Niño prediction. Geophys Res Lett 40:2278–2283. doi:10.1002/grl.50362

    Article  Google Scholar 

  • Kucharski F, Bracco A, Yoo JH, Molteni F (2007) Low-frequency variability of the Indian monsoon–ENSO relationship and the tropical Atlantic: the ‘‘weakening’’ of the 1980s and 1990s. J Clim 20:4255–4266. doi:10.1175/JCLI4254.1

    Article  Google Scholar 

  • Kucharski F, Bracco A, Yoo JH, Molteni F (2008) Atlantic forced component of the Indian monsoon interannual variability. Geophys Res Lett 35:L04706. doi:10.1029/2007GL033037

    Article  Google Scholar 

  • Kucharski F, Kang I-S, Farneti R, Feudale L (2011) Tropical Pacific response to 20th century Atlantic warming. Geophys Res Lett 38:L03702. doi:10.1029/2010GL046248

    Article  Google Scholar 

  • Kug J-S, Kang I-S (2006) Interactive feedback between the Indian Ocean and ENSO. J Clim 19:1784–1801

    Article  Google Scholar 

  • Kug J-S, Kirtman BP, Kang I-S (2006a) Interactive feedback between ENSO and the Indian Ocean in an interactive coupled model. J Clim 19:6371–6381

    Article  Google Scholar 

  • Kug J-S, Li T, An S-I, Kang I-S, Luo JJ, Masson S, Yamagata T (2006b) Role of the ENSO–Indian Ocean coupling on ENSO variability in a coupled GCM. Geophys Res Lett. doi:10.1029/2005GL024916

    Google Scholar 

  • Kug J-S, Sooraj KP, Li T, Jin F-F, Kang I-S (2010) Precursors of the El Niño/La Niña onset and their inter-relationship. J Geophys Res 115:D05106. doi:10.1029/2009JD012861

    Google Scholar 

  • Kurcharski F, Syed FS, Burhan A, Farah I, Gohar A (2015) Tropical Atlantic influence on Pacific variability and mean state in the twentieth century in observations and CMIP5. Clim Dyn 44:881–896. doi:10.1007/s00382-014-2228-z

    Article  Google Scholar 

  • Li G, Xie S-P, Du Y (2015) Monsoon-induced biases of climate models over the Tropical Indian Ocean. J Clim 28:3058–3072. doi:10.1175/JCLI-D-14-00740.1

    Article  Google Scholar 

  • Liu L, Xie S-P, Zheng X-T, Li T, Du Y, Huang G, Yu W-D (2014) Indian Ocean variability in the CMIP5 multi-model ensemble: the zonal dipole mode. Clim Dyn 43:1715–1730. doi:10.1007/s00382-013-2000-9

    Article  Google Scholar 

  • Losada T, Rodriguez-Fonseca B, Polo I, Janicot S, Gervois S, Chauvin F, Ruti P (2010) Tropical response to the Atlantic equatorial mode: AGCM multimodel approach. Clim Dyn 5:45–52. doi:10.1007/s00382-009-0624-6

    Article  Google Scholar 

  • Luo JJ, Masson S, Behera SK, Shingu S, Yamagata T (2005a) Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J Clim 18:4474–4497. doi:10.1175/JCLI3526.1

    Article  Google Scholar 

  • Luo JJ, Masson S, Roeckner E, Madec G, Yamagata T (2005b) Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J Clim 18:2344–2360

    Article  Google Scholar 

  • Luo JJ, Zhang R, Behera SK, Masumoto Y, Jin F-F, Lukas R, Yamagata T (2010) Interaction between El Niño and extreme Indian Ocean dipole. J Clim 23:726–742

    Article  Google Scholar 

  • Madec G (2008) NEMO ocean engine. Note du Pole de modelisation, Institut Pierre-Simon Laplace (IPSL) No 27. ISSN No 1288-1619

  • Masson S, Terray P, Madec G, Luo J-J, Yamagata T, Takahashi K (2012) Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Clim Dyn. doi:10.1007/s00382-011-1247-2

    Google Scholar 

  • Ohba M, Ueda H (2007) An impact of SST anomalies in the Indian Ocean in acceleration of the El Niño to La Niña transition. J Meteorol Soc Jpn 85:335–348

    Article  Google Scholar 

  • Polo I, Martin-Rey M, Rodriguez-Fonseca B, Kucharski F, Mechoso CR (2014) Processes in the Pacific La Niña onset triggered by the Atlantic Niño. Clim Dyn. doi:10.1007/s00382-014-2354-7

    Google Scholar 

  • Prodhomme C, Terray P, Masson S, Izumo T, Tozuka T, Yamagata T (2014) Impacts of Indian Ocean SST biases on the Indian Monsoon: as simulated in a global coupled model. Clim Dyn 42:271–290. doi:10.1007/s00382-013-1671-6

    Article  Google Scholar 

  • Prodhomme C, Terray P, Masson S, Boschat G, Izumo T (2015) Oceanic factors controlling the Indian Summer Monsoon Onset in a coupled model. Clim Dyn 44:977–1002. doi:10.1007/s00382-014-2200-y

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res. doi:10.1029/2002JD002670

    Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496. doi:10.1175/2007JCLI1824.1

    Article  Google Scholar 

  • Richter I, Xie S-P, Behera SK, Doi T, Masumoto Y (2014) Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Clim Dyn 42:171–188. doi:10.1007/s00382-012-1624-5

    Article  Google Scholar 

  • Rodriguez-Fonseca B, Polo I, Garcia-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36:L20705. doi:10.1029/2009GL040048

    Article  Google Scholar 

  • Roeckner E, Baüml G, Bonaventura L, Brokopf R, Esch M, Girogetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM 5. Part I, MPI Report, vol 349. Hamburg, Max-Planck-Institut für Meteorologie

    Google Scholar 

  • Roxy M, Rikita K, Terray P, Masson S (2014) The curious case of Indian Ocean warming. J Clim 27:8501–8508. doi:10.1175/JCLI-D-14-00471.1

    Article  Google Scholar 

  • Santoso A, England MH, Cai W (2012) Impact of Indo-Pacific feedback interactions on ENSO dynamics diagnosed using ensemble climate simulations. J Clim 25:7743–7763

    Article  Google Scholar 

  • Terray P (2011) Southern Hemisphere extra-tropical forcing: a new paradigm for El Niño–Southern Oscillation. Clim Dyn 36:2171–2199. doi:10.1007/s00382-010-0825-z

    Article  Google Scholar 

  • Terray P, Kamala K, Masson S, Madec G, Sahai AK, Luo J-J, Yamagata T (2012) The role of the intra-daily SST variability in the Indian monsoon variability and monsoon-ENSO–IOD relationships in a global coupled model. Clim Dyn 39:729–754. doi:10.1007/s00382-011-1240-9

    Article  Google Scholar 

  • Timmermann R, Goosse H, Madec G, Fichefet T, Ethe C, Duliere V (2005) On the representation of high latitude processes in the ORCA-LIM global coupled sea ice–ocean model. Ocean Model 8:175–201

    Article  Google Scholar 

  • Tollefson J (2014) El Niño tests forecasters. Nature 508:20–21. doi:10.1038/508020a

    Article  Google Scholar 

  • Valcke (2006) OASIS3 user guide (prism_2-5). CERFACS technical report TR/CMGC/06/73, PRISM report no. 3, Toulouse, pp 64

  • Vimont DJ, Wallace JM, Battisti DS (2003) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Clim 16:2668–2675

    Article  Google Scholar 

  • Wang S-Y, L’Heureux M, Chia H-H (2012) ENSO prediction one year in advance using western North Pacific sea surface temperatures. Geophys Res Lett 39:L05702. doi:10.1029/2012GL050909

    Google Scholar 

  • Weisberg RH, Wang C (1997) A western Pacific oscillator paradigm for the El Niño–Southern Oscillation. Geophys Res Lett 24:779–782

    Article  Google Scholar 

  • Wu R, Kirtman BP (2004) Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J Clim 17:4019–4031

    Article  Google Scholar 

  • Wyrtki K (1975) El Niño—the dynamic response of the equatorial Pacific Oceanto atmospheric forcing. J Phys Oceanogr 5:572–584

    Article  Google Scholar 

  • Yeh S-W, Wu R, Kirtman B (2007) Impact of the Indian Ocean on ENSO variability in a hybrid coupled model. Q J R Meteorol Soc 133:445–457

    Article  Google Scholar 

  • Yu J-Y (2005) Enhancement of ENSO’s persistence barrier by biennial variability in a coupled atmosphere–ocean general circulation model. Geophys Res Lett 32:L13707. doi:10.1029/2005GL023406

    Article  Google Scholar 

  • Yu J-Y, Mechoso CR, McWilliams JC, Arakawa A (2002) Impacts of the Indian Ocean on the ENSO cycle. Geophys Res Lett 29:1204. doi:10.1029/2001GL014098

    Google Scholar 

  • Yu J-Y, Sun F, Kao H-Y (2009) Contributions of Indian Ocean and monsoon biases to the excessive biennial ENSO in CCSM3. J Clim 22:1850–1858

    Article  Google Scholar 

  • Zhang Y, Norris JR, Wallace JM (1998) Seasonality of large scale atmosphere–ocean interaction over the North Pacific. J Clim 11:2473–2481

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely thank the two anonymous reviewers for their comments, which help us to improve this paper. The authors gratefully acknowledge the financial support given by the Earth System Science Organization, Ministry of Earth Sciences, Government of India (Project No. MM/SERP/CNRS/2013/INT-10/002 Contribution #MM/PASCAL/RP/04) to conduct this research under Monsoon Mission. Pascal Terray is funded by Institut de Recherche pour le Développement (IRD, France) and this work was done while Pascal Terray was a visiting scientist at IITM. This work was performed using HPC resources in France from GENCI-IDRIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Terray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terray, P., Masson, S., Prodhomme, C. et al. Impacts of Indian and Atlantic oceans on ENSO in a comprehensive modeling framework. Clim Dyn 46, 2507–2533 (2016). https://doi.org/10.1007/s00382-015-2715-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2715-x

Keywords

Navigation