Skip to main content
Log in

Can large scale surface circulation changes modulate the sea surface warming pattern in the Tropical Indian Ocean?

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The increased rate of Tropical Indian Ocean (TIO) surface warming has gained a lot of attention in the recent years mainly due to its regional climatic impacts. The processes associated with this increased surface warming is highly complex and none of the mechanisms in the past studies could comprehend the important features associated with this warming such as the negative trends in surface net heat fluxes and the decreasing temperature trends at thermocline level. In this work we studied a previously unexplored aspect, the changes in large scale surface circulation pattern modulating the surface warming pattern over TIO. We use ocean reanalysis datasets and a suit of Ocean General Circulation Model (OGCM) experiments to address this problem. Both reanalysis and OGCM reveal strengthening large scale surface circulation pattern in the recent years. The most striking feature is the intensification of cyclonic gyre circulation around the thermocline ridge in the southwestern TIO. The surface circulation change in TIO is mainly associated with the surface wind changes and the geostrophic response to sea surface height decrease in the western/southwestern TIO. The surface wind trends closely correspond to SST warming pattern. The strengthening mean westerlies over the equatorial region are conducive to convergence in the central and divergence in the western equatorial Indian Ocean (IO) resulting central warming and western cooling. The resulting east west SST gradient further enhances the equatorial westerlies. This positive feedback mechanism supports strengthening of the observed SST trends in the equatorial Indian Ocean. The cooling induced by the enhanced upwelling in the west is compensated to a large extent by warming due to reduction in mixed layer depth, thereby keeping the surface temperature trends in the west to weak positive values. The OGCM experiments showed that the wind induced circulation changes redistribute the excess heat received in the western TIO to central and east thereby enhancing warming in the central equatorial IO. The increased surface warming in central TIO increases the latent heat loss, and keeps the net heat flux trends negative. Model sensitivity experiments reveal that the subsurface cooling at thermocline level in TIO is contributed by variability in Pacific via Indonesian Through Flow whereas the surface warming trend is mainly induced by the changes in the local forcing. The long term changes in IO Rossby waves are not induced by local atmospheric forcing but are forced by Pacific. The thermocline shoaling in the west is therefore amplified by the remote influence of Pacific via wave transmission through Indonesian archipelago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alory G, Meyers G (2009) Warming of the upper equatorial Indian Ocean and changes in the heat budget (1960–99). J Clim 22(1):93–113. doi:10.1175/2008JCLI2330.1

    Article  Google Scholar 

  • Alory G, Wijffels S, Meyers G (2007) Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys Res Lett 34(2):L02606. doi:10.1029/2006GL028044

    Article  Google Scholar 

  • Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc 139(674):1132–1161. doi:10.1002/qj.2063

    Article  Google Scholar 

  • Barnett TP, Pierce DW, Achutarao KM, Gleckler PJ, Santer BD, Gregory JM, Washington WM (2005) Penetration of human-induced warming into the world’s oceans. Science 309(5732):284–287. doi:10.1126/science.1112418

    Article  Google Scholar 

  • Cai W, Meyers G, Ge S (2005) Transmission of ENSO signal to the Indian Ocean. Geophys Res Lett 32(5):L05616. doi:10.1029/2004GL021736

    Article  Google Scholar 

  • Cai W, Cowan T, Dix M (2007) Anthropogenic aerosol forcing and the structure of temperature trends in the southern Indian Ocean. Geophys Res Lett 34(14):L14611. doi:10.1029/2007GL030380

    Article  Google Scholar 

  • Cai W, Sullivan A, Cowan T (2008) Shoaling of the off-equatorial south Indian Ocean thermocline: Is it driven by anthropogenic forcing? Geophys Res Lett 35(12):L12711. doi:10.1029/2008GL034174

    Article  Google Scholar 

  • Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Weather Rev 136(8):2999–3017. doi:10.1175/2007MWR1978.1

    Article  Google Scholar 

  • Chung CE, Ramanathan V (2006) Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. J Clim 19(10):2036–2045. doi:10.1175/JCLI3820.1

    Article  Google Scholar 

  • Deser C, Phillips AS, Alexander MA (2010) Twentieth century tropical sea surface temperature trends revisited. Geophys Res Lett 37(10):L10701. doi:10.1029/2010GL043321

    Article  Google Scholar 

  • Dong L, Zhou T (2014) The Indian Ocean sea surface temperature warming simulated by CMIP5 models during the twentieth century: competing forcing roles of GHGs and anthropogenic aerosols. J Clim 27(9):3348–3362. doi:10.1175/JCLI-D-13-00396.1

    Article  Google Scholar 

  • Dong L, Zhou T, Wu B (2013) Indian Ocean warming during 1958–2004 simulated by a climate system model and its mechanism. Clim Dyn 42(1–2):203–217. doi:10.1007/s00382-013-1722-z

    Google Scholar 

  • Du Y, Xie S-P (2008) Role of atmospheric adjustments in the Tropical Indian Ocean warming during the 20th century in climate models. Geophys Res Lett 35(8):L08712. doi:10.1029/2008GL033631

    Article  Google Scholar 

  • Fox-Kemper B, Ferrari R, Hallberg R (2008) Parameterization of mixed layer eddies. Part I: theory and diagnosis. J Phys Oceanogr 38(6):1145–1165

    Article  Google Scholar 

  • Giannini A, Saravanan R, Chang P (2003) Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 302(5647):1027–1030. doi:10.1126/science.1089357

    Article  Google Scholar 

  • Griffies SM, Hallberg RW (2000) Biharmonic Friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon Weather Rev 128(8):2935–2946. doi:10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2

    Article  Google Scholar 

  • Griffies SM, Harrison MJ, Pacanowski RC, Rosati A (2004) A technical guide to MOM4. GFDL Ocean Group Technical Report No. 5, p 337

  • Griffies SM et al (2005) Formulation of an ocean model for global climate simulations. Ocean Sci 2(3):165–246. doi:10.5194/osd-2-165-2005

    Google Scholar 

  • Han W, Meehl GA, Hu A (2006) Interpretation of tropical thermocline cooling in the Indian and Pacific oceans during recent decades. Geophys Res Lett 33(23):L23615. doi:10.1029/2006GL027982

    Article  Google Scholar 

  • Han W et al (2010) Patterns of Indian Ocean sea-level change in a warming climate. Nat Geosci 3(8):546–550. doi:10.1038/ngeo901

    Article  Google Scholar 

  • Han W, Vialard J, McPhaden MJ, Lee T, Masumoto Y, Feng M, de Ruijter WPM (2014) Indian Ocean decadal variability: a review. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-13-00028.1

    Google Scholar 

  • Hoerling MP, Kumar A (2003) The perfect ocean for drought. Science 299(5607):691–694. doi:10.1126/science.1079053

    Article  Google Scholar 

  • Hoerling MP, Hurrell JW, Xu T, Bates GT, Phillips AS (2004) Twentieth century North Atlantic climate change. Part II: understanding the effect of Indian Ocean warming. Clim Dyn 23(3–4):391–405. doi:10.1007/s00382-004-0433-x

    Google Scholar 

  • Ingleby B, Huddleston M, Breu FX, Guggenbichler S, Wollmann JC (2007) Quality control of ocean temperature and salinity profiles—historical and real-time data. J Mar Syst 65(1–4):158–175. doi:10.1016/j.jmarsys.2005.11.019

    Article  Google Scholar 

  • Kara AB, Rochford PA, Hurlburt HE (2000) An optimal definition for ocean mixed layer depth. J Geophys Res 105(C7):16803. doi:10.1029/2000JC900072

    Article  Google Scholar 

  • Large WG, Yeager SG (2008) The global climatology of an interannually varying air–sea flux data set. Clim Dyn 33(2–3):341–364. doi:10.1007/s00382-008-0441-3

    Google Scholar 

  • Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32(4):363–403. doi:10.1029/94RG01872

    Article  Google Scholar 

  • Levitus S (2005) Warming of the world ocean, 1955–2003. Geophys Res Lett 32(2):L02604. doi:10.1029/2004GL021592

    Article  Google Scholar 

  • Levitus S, Antonov JI, Boyer TP, Locarnini RA, Garcia HE, Mishonov AV (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res Lett. doi:10.1029/2008GL037155

    Google Scholar 

  • Li Q, Ren RC, Cai M, Wu GX (2012) Attribution of the summer warming since 1970s in Indian Ocean Basin to the inter-decadal change in the seasonal timing of El Niño decay phase. Geophys Res Lett. doi:10.1029/2012GL052150

    Google Scholar 

  • Luo JJ, Sasaki W, Masumoto Y (2012) Indian Ocean warming modulates Pacific climate change. Proc Natl Acad Sci USA 109(46):18701–18706. doi:10.1073/pnas.1210239109

    Article  Google Scholar 

  • Lyman JM, Good SA, Gouretski VV, Ishii M, Johnson GC, Palmer MD, Smith DM, Willis JK (2010) Robust warming of the global upper ocean. Nature 465(7296):334–337. doi:10.1038/nature09043

    Article  Google Scholar 

  • Manizza M, Le Quéré C, Watson AJ, Buitenhuis ET (2005) Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model. Geophys Res Lett 32(5):1–4. doi:10.1029/2004GL020778

    Article  Google Scholar 

  • Mishra V, Smoliak BV, Lettenmaier DP, Wallace JM (2012) A prominent pattern of year-to-year variability in Indian Summer Monsoon Rainfall. Proc Natl Acad Sci USA 109(19):7213–7217. doi:10.1073/pnas.1119150109

    Article  Google Scholar 

  • Miyama T, McCreary JP, Jensen TG, Loschnigg J, Godfrey S, Ishida A (2003) Structure and dynamics of the Indian-Ocean cross-equatorial cell. Deep Sea Res Part II Top Stud Oceanogr 50(12–13):2023–2047. doi:10.1016/S0967-0645(03)00044-4

    Article  Google Scholar 

  • Nidheesh AG, Lengaigne M, Vialard J, Unnikrishnan AS, Dayan H (2013) Decadal and long-term sea level variability in the tropical Indo-Pacific Ocean. Clim Dyn 41(2):381–402. doi:10.1007/s00382-012-1463-4

    Article  Google Scholar 

  • Rahul S, Gnanaseelan C (2013) Net heat flux over the Indian Ocean: trends, driving mechanisms, and uncertainties. IEEE Geosci Remote Sens Lett 10(4):776–780

    Article  Google Scholar 

  • Rao RR, Kumar MSG, Ravichandran M, Rao AR, Gopalakrishna VV, Thadathil P (2010a) Interannual variability of Kelvin wave propagation in the wave guides of the equatorial Indian Ocean, the coastal Bay of Bengal and the southeastern Arabian Sea during 1993–2006. Deep Sea Res Part I Oceanogr Res Pap 57(1):1–13. doi:10.1016/j.dsr.2009.10.008

    Article  Google Scholar 

  • Rao SA, Chaudhari HS, Pokhrel S, Goswami BN (2010b) Unusual Central Indian Drought of Summer Monsoon 2008: role of Southern Tropical Indian Ocean Warming. J Clim 23(19):5163–5174. doi:10.1175/2010JCLI3257.1

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Globally complete analyses of sea surface temperature, sea ice and night marine air temperature, 1871–2000. J Geophys Res 108:4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Reason CJC, Allan RJ, Lindesay JA (1996) Evidence for the influence of remote forcing on interdecadal variability in the southern Indian Ocean. J Geophys Res 101(C5):11867–11882

    Article  Google Scholar 

  • Roxy MK, Ritika K, Terray P, Masson S (2014) The curious case of Indian Ocean warming. J Clim 27(22):8501–8509. doi:10.1175/JCLI-D-14-00471.1

    Article  Google Scholar 

  • Schott FA, McCreary JP (2001) The monsoon circulation of the Indian Ocean. Prog Oceanogr 51(1):1–123. doi:10.1016/S0079-6611(01)00083-0

    Article  Google Scholar 

  • Schott FA, Xie S-P, McCreary JP (2009) Indian Ocean circulation and climate variability. Rev Geophys 47(1):RG1002. doi:10.1029/2007RG000245

    Article  Google Scholar 

  • Schwarzkopf FU, Böning CW (2011) Contribution of Pacific wind stress to multi-decadal variations in upper-ocean heat content and sea level in the tropical south Indian Ocean. Geophys Res Lett 38(12):L12602. doi:10.1029/2011GL047651

    Article  Google Scholar 

  • Shenoi SSC, Saji PK, Almeida AM (1999) Near-surface circulation and kinetic energy in the Tropical Indian Ocean derived from Lagrangian drifters. J Mar Res 57(6):885–907. doi:10.1357/002224099321514088

    Article  Google Scholar 

  • Simmons HL, Jayne SR, Laurent LCS, Weaver AJ (2004) Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Model 6(3–4):245–263. doi:10.1016/S1463-5003(03)00011-8

    Article  Google Scholar 

  • Sindhu B, Suresh I, Unnikrishnan AS, Bhatkar NV, Neetu S, Michael GS (2007) Improved bathymetric datasets for the shallow water. J Earth Syst Sci 116(3):261–274. doi:10.1007/s12040-007-0025-3

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296. doi:10.1175/2007JCLI2100.1

    Article  Google Scholar 

  • Sreenivas P, Gnanaseelan C, Prasad KVSR (2012) Influence of El Niño and Indian Ocean dipole on sea level variability in the Bay of Bengal. Glob Planet Change 80–81:215–225. doi:10.1016/j.gloplacha.2011.11.001

    Article  Google Scholar 

  • Swapna P, Krishnan R, Wallace JM (2013) Indian Ocean and monsoon coupled interactions in a warming environment. Clim Dyn. doi:10.1007/s00382-013-1787-8

    Google Scholar 

  • Timmermann A, McGregor S, Jin F-F (2010) Wind effects on past and future regional sea level trends in the southern Indo-Pacific. J Clim 23(16):4429–4437. doi:10.1175/2010JCLI3519.1

    Article  Google Scholar 

  • Tokinaga H, Xie S-P, Deser C, Kosaka Y, Okumura YM (2012) Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature 491(7424):439–443. doi:10.1038/nature11576

    Article  Google Scholar 

  • Trenary LL, Han W (2008) Causes of decadal subsurface cooling in the Tropical Indian Ocean during 1961–2000. Geophys Res Lett 35(17):L17602. doi:10.1029/2008GL034687

    Article  Google Scholar 

  • Trenary L, Han W (2013) Local and remote forcing of decadal sea level and thermocline depth variability in the south Indian Ocean. J Geophys Res Ocean 118(1):381–398. doi:10.1029/2012JC008317

    Article  Google Scholar 

  • Unnikrishnan AS, Shankar D (2007) Are sea-level-rise trends along the coasts of the north Indian Ocean consistent with global estimates? Glob Planet Change 57(3–4):301–307. doi:10.1016/j.gloplacha.2006.11.029

    Article  Google Scholar 

  • Vargas-Hernandez JM, Wijffels SE, Meyers G, Belo do Couto A, Holbrook NJ (2015a) Decadal characterization of Indo-Pacific Ocean subsurface temperature modes in SODA reanalysis. J Clim 28(15):6113–6132. doi:10.1175/JCLI-D-14-00700.1

    Article  Google Scholar 

  • Vargas-Hernandez JM, Wijffels S, Meyers G, Holbrook NJ (2015b) Slow westward movement of salinity anomalies across the tropical south Indian Ocean. J Geophys Res. doi:10.1002/2015JC010933

    Google Scholar 

  • Watterson IG (2001) Decomposition of global ocean currents using a simple iterative method. J Atmos Ocean Technol 18(4):691–703. doi:10.1175/1520-0426(2001)018<0691:DOGOCU>2.0.CO;2

    Article  Google Scholar 

  • Williams AP, Funk C (2011) A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Clim Dyn 37(11–12):2417–2435. doi:10.1007/s00382-010-0984-y

    Article  Google Scholar 

  • Xie S-P, Deser C, Vecchi GA, Ma J, Teng H, Wittenberg AT (2010) Global warming pattern formation: sea surface temperature and rainfall. J Clim 23(4):966–986. doi:10.1175/2009JCLI3329.1

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge Director, Indian Institute of Tropical Meteorology (IITM), Pune for research facilities and support. Rahul S acknowledges Council for Scientific and Industrial Research (CSIR), India and IITM Pune for research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gnanaseelan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahul, S., Gnanaseelan, C. Can large scale surface circulation changes modulate the sea surface warming pattern in the Tropical Indian Ocean?. Clim Dyn 46, 3617–3632 (2016). https://doi.org/10.1007/s00382-015-2790-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2790-z

Keywords

Navigation