Skip to main content
Log in

Decadal modulation of the ENSO–East Asian winter monsoon relationship by the Atlantic Multidecadal Oscillation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This work investigates the decadal modulation of the El Niño-Southern Oscillation (ENSO)–East Asian winter monsoon (EAWM) relationship by the Atlantic Multidecadal Oscillation (AMO). A stable ENSO–EAWM relationship is found during the positive AMO phase but not during the negative phase. While the impact of El Niño events on the EAWM does not depend on the AMO phase, a different picture is observed for La Niña events. The La Niña boreal winter season coincides with a strengthened EAWM during a positive AMO phase and a weakened EAWM during a negative AMO phase. We suggest that the AMO’s modulating effect mainly comprises two pathways that influence ENSO’s impact on the EAWM. On one hand, when La Niña coincides with a positive AMO, the warm SST anomalies over the western North Pacific (WNP) are amplified both in intensity and spatial extent, which favors strengthened WNP cyclonic anomalies and an enhanced EAWM. During La Niña with a negative AMO, only very weak SST anomalies occur over the WNP with reduced WNP cyclonic anomalies that are confined to the tropics, thus having little effect on the EAWM. On the other hand, an eastward-propagating Rossby wavetrain across the mid-high latitudes of Eurasia during a warm AMO phase strengthens the Siberian high and thus leads to a strengthened EAWM, while during a cold AMO phase the Siberian high is weakened, leading to a reduced EAWM. In contrast, El Niño and its associated atmospheric responses are relatively strong and stable, independent of the AMO phase. These results carry important implications to the seasonal-to-interannual predictability associated with ENSO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Boyle JS, Chen TJ (1987) Synoptic aspects of the wintertime East monsoon. In: Chang CP, Krishnamurti TN (eds) Monsoon meteorology. Oxford University Press, Oxford, pp 125–160

    Google Scholar 

  • Chang CP, Wang Z, Hendon H (2006) The Asian winter monsoon. In: Wang B (ed) The Asian monsoon. Praxis, New York, p 89

    Chapter  Google Scholar 

  • Chen W (2002) Impacts of El Niño and La Niña on the cycle of the East Asian winter and summer monsoon. Chin J Atmos Sci 26(5):595–610 (in Chinese)

    Google Scholar 

  • Chen W, Graf HF, Huang R (2000) The interannual variability of East Asian winter monsoon and its relation to the summer monsoon. Adv Atmos Sci 17:48–60

    Article  Google Scholar 

  • Chen M, Xie P, Janowiak J, Arkin P (2002) Global land precipitation: a 50-yr monthly analysis based on gauge observations. J Hydrometeorol 3:249–266

    Article  Google Scholar 

  • Chen W, Dong B, Lu R (2010) Impact of the Atlantic Ocean on the multidecadal fluctuation of El Niño-Southern Oscillation–South Asian monsoon relationship in a coupled general circulation model. J Geophys Res 115:D17109

    Article  Google Scholar 

  • Chen W, Lu R, Dong B (2014a) Intensified anticyclonic anomaly over the western North Pacific during El Niño decaying summer under a weakened Atlantic thermohaline circulation. J Geophys Res Atmos 119:13637–13650

    Article  Google Scholar 

  • Chen Z, Wu R, Chen W (2014b) Impacts of autumn Arctic sea ice concentration changes on the East Asian winter monsoon variability. J Clim 27:5433–5450. doi:10.1175/JCLI-D-13-00731.1

    Article  Google Scholar 

  • Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676

    Article  Google Scholar 

  • Dong BW, Sutton RT (2002) Adjustment of the coupled ocean–atmosphere system to a sudden change in the thermohaline circulation. Geophys Res Lett. doi:10.1029/2002GL015229

    Google Scholar 

  • Dong BW, Sutton RT (2007) Enhancement of ENSO variability by a weakened Atlantic thermohaline circulation in a coupled GCM. J Clim 20:4920–4939

    Article  Google Scholar 

  • Dong BW, Sutton RT, Scaife AA (2006) Multidecadal modulation of El Niño-Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys Res Lett 33:L08705

    Google Scholar 

  • Donner LJ, Wyman BL, Hemler RS, Horowitz LW, Ming Y, Zhao M, Golaz JC et al (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24(13):3484–3519

    Article  Google Scholar 

  • Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080

    Article  Google Scholar 

  • Gastineau G, Frankignoul C (2015) Influence of the North Atlantic SST variability on the atmospheric circulation during the twentieth century. J Clim 28:1396–1416

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for the heat induced tropical circulation. Q J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Gong D, Wang S, Zhu J (2001) East Asian winter monsoon and Arctic oscillation. Geophys Res Lett 28:2073–2076

    Article  Google Scholar 

  • Grossmann I, Klotzbach PJ (2009) A review of North Atlantic modes of natural variability and their driving mechanisms. J Geophys Res 114:D24107

    Article  Google Scholar 

  • Han Z, Li S, Mu M (2011) The role of warm North Atlantic SST in the formation of positive height anomalies over the Ural Mountains during January 2008. Adv Atmos Sci 28(2):246–256. doi:10.1007/s00376-010-0069-1

    Article  Google Scholar 

  • He S, Wang H (2013) Oscillating relationship between the East Asian winter monsoon and ENSO. J Clim 26:9819–9838

    Article  Google Scholar 

  • Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim 10:1769–1786

    Article  Google Scholar 

  • Hong S, Kang IS, Choi I, Ham YG (2013) Climate responses in the tropical Pacific associated with Atlantic warming in recent decades. Asia-Pacific J Atmos Sci 49(2):209–217. doi:10.1007/s13143-013-0022-1

    Article  Google Scholar 

  • Huang R, Chen J, Wang L et al (2012) Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system. Adv Atmos Sci 29:910–942. doi:10.1007/s00376-012-2015-x

    Article  Google Scholar 

  • Jin F-F, An S-I, Timmermann A, Zhao J (2003) Strong El Niño events and nonlinear dynamical heating. Geophys Res Lett 30:1120. doi:10.1029/2002GL016356

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J (1996) The NCEP/NCAR reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kang IS, No HH, Kucharski F (2014) ENSO amplitude modulation associated with the mean SST changes in the tropical central Pacific induced by Atlantic multidecadal oscillation. J Clim 27:7911–7920

    Article  Google Scholar 

  • Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288:1984–1985

    Article  Google Scholar 

  • Kim JW, Yeh SW, Chang EC (2014) Combined effect of El Niño-Southern Oscillation and Pacific Decadal Oscillation on the East Asian winter monsoon. Clim Dyn 42:957–971

    Article  Google Scholar 

  • Kim JW, An SI, Jun SY, Park HJ, Yeh SW (2016) ENSO and East Asian winter monsoon relationship modulation associated with the anomalous northwest Pacific anticyclone. Clim Dyn. doi:10.1007/s00382-016-3371-5

    Google Scholar 

  • Kucharski F, Kang I-S, Farneti R, Feudale L (2011) Tropical Pacific response to 20th century Atlantic warming. Geophys Res Lett 38:L03702. doi:10.1029/2010GL046248

    Article  Google Scholar 

  • Lau KM, Li MT (1984) The Monsoon of East Asia and its global associations—a survey. Bull Am Meteorol Soc 65:114–125

    Article  Google Scholar 

  • Li C (1990) Interaction between anomalous winter monsoon in East Asia and El Niño events. Adv Atmos Sci 7:36–46

    Article  Google Scholar 

  • Li S, Bates G (2007) Influence of the Atlantic multidecadal oscillation on the winter climate of East China. Adv Atmos Sci 24:126–135

    Article  Google Scholar 

  • Li C, Ma H (2012) Relationship between ENSO and winter rainfall over Southeast China and its decadal variability. Adv Atmos Sci 29:1129–1141

    Article  Google Scholar 

  • Li F, Wang H (2014) Autumn Eurasian snow depth, autumn Arctic sea ice cover and East Asian winter monsoon. Int J Climatol 34(13):3616–3625. doi:10.1002/joc.3936

    Article  Google Scholar 

  • Li J, Wu Z (2012) Importance of autumn Arctic sea ice to northern winter snowfall. Proc Natl Acad Sci 109:E1898. doi:10.1073/pnas.1205075109

    Article  Google Scholar 

  • Liu Y, Wang L, Zhou W (2014) Three Eurasian teleconnection patterns: spatial structures, temporal variability, and associated winter climate anomalies. Clim Dyn 42:2817–2839. doi:10.1007/s00382-014-2163-z

    Article  Google Scholar 

  • Lu R, Chen W, Dong B (2008) How does a weakened Atlantic thermohaline circulation lead to an intensification of the ENSO–South Asian summer monsoon interaction? Geophys Res Lett 35:L08706. doi:10.1029/2008GL033394

    Google Scholar 

  • Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteorol Soc Jpn 44(1):25–42

    Article  Google Scholar 

  • McGregor S, Timmermann A, Stuecker MF, England MH, Merrifield M, Jin F-F, Chikamoto Y (2014) Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Change. doi:10.1038/NCLIMATE2330

    Google Scholar 

  • Newman M, Alexander M, Ault T, Cobb K, Deser C, Di Lorenzo E, Mantua N, Miller A, Minobe S, Nakamura H, Schneider N, Vimont D, Phillips A, Scott J, Smith C (2016) The Pacific decadal oscillation, revisited. J Clim. doi:10.1175/JCLI-D-15-0508.1

    Google Scholar 

  • Saravanan R, Chang P (2000) Interaction between tropical Atlantic variability and El Niño-Southern Oscillation. J Clim 13:2177–2194

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Stuecker MF, Timmermann A, Jin F-F, McGregor S, Ren HL (2013) A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nat Geosci 6:540–544

    Article  Google Scholar 

  • Stuecker MF, Jin F-F, Timmermann A, McGregor S (2015) Combination mode dynamics of the anomalous North-West Pacific anticyclone. J Clim 28:1093–1111

    Article  Google Scholar 

  • Stuecker MF, Jin F-F, Timmermann A, McGregor S (2016) Reply to Comments on Combination Mode Dynamics of the Anomalous Northwest Pacific Anticyclone. J Clim. doi:10.1175/JCLI-D-15-0558.1

    Google Scholar 

  • Sun BM, Li CY (1997) Relationship between the disturbances of East Asian trough and tropical convective activities in boreal winter. Chin Sci Bull 42:500–504 (in Chinese)

    Google Scholar 

  • Sun YB, Clemens SC, Morrill C, Lin X, Wang X, An Z (2011) Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nat Geosci 5:46–49

    Article  Google Scholar 

  • Sutton RT, Dong B (2012) Atlantic Ocean influence on a shift in European climate in the 1990s. Nat Geosci 5:788–792

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118

    Article  Google Scholar 

  • Takaya K, Nakamura H (2001) A formulation of a phaseindependent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci 58:608–627

    Article  Google Scholar 

  • Timmermann A, Okumura Y, An SI, Clement A, Dong B, Guilyardi E, Hu A, Jungclaus JH, Renold M, Stocker TF (2007) The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J Clim 20:4899–4919

    Article  Google Scholar 

  • Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33:L12704. doi:10.1029/2006GL026894

    Article  Google Scholar 

  • Wang L, Chen W (2010) How well do existing indices measure the strength of the East Asian winter monsoon? Adv Atmos Sci 27:855–870

    Article  Google Scholar 

  • Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J Clim 13:1517–1536

    Article  Google Scholar 

  • Wang L, Chen W, Huang RH (2008) Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon. Geophys Res Lett 35:L20702. doi:10.1029/2008GL035287

    Article  Google Scholar 

  • Wang Y, Li S, Luo D (2009) Seasonal response of Asian monsoonal climate to the Atlantic multidecadal oscillation. J Geophys Res Atmos 114(D2):D02112. doi:10.1029/2008jd010929

    Google Scholar 

  • Wang B, Wu Z, Liu J, Chang CP, Li J, Zhou T (2010) Another look at climate variations of the East Asian winter monsoon: northern and southern temperature modes. J Clim 23:1495–1512

    Article  Google Scholar 

  • Wang H, Yu E, Yang S (2011) An exceptionally heavy snowfall in northeast China: large-scale circulation anomalies and hindcast of the NCAR WRF model. Meteorol Atmos Phys 113:11–25

    Article  Google Scholar 

  • Wang H, He S, Liu J (2013a) Present and future relationship between the East Asian winter monsoon and ENSO: results of CMIP5. J Geophys Res 118:5222–5237

    Article  Google Scholar 

  • Wang J, Bao Y, Ljungqvist FC, Zhao Y (2013b) The relationship between the Atlantic multidecadal oscillation and temperature variability in China during the last millennium. J Quat Sci 28:653–658

    Article  Google Scholar 

  • Watanabe M, Jin FF (2002) Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophys Res Lett 29(10):1478. doi:10.1029/2001GL014318

    Article  Google Scholar 

  • Wu Z, Zhang P (2015) Interdecadal variability of the mega-ENSO–NAO synchronization in winter. Clim Dyn 45:1117–1128

    Article  Google Scholar 

  • Wu R, Kirtman BP, Pegion K (2006) Local air–sea relationship in observations and model simulations. J Clim 19:4914–4932

    Article  Google Scholar 

  • Wu Z, Li J, Wang B, Liu X (2009) Can the Southern Hemisphere annular mode affect Chinese winter monsoon? J Geophys Res 114:D11107. doi:10.1029/2008JD011501

    Article  Google Scholar 

  • Wu B, Li T, Zhou T (2010) Asymmetry of atmospheric circulation anomalies over the Western North Pacific between El Niño and La Niña. J Clim 23:4807–4822

    Article  Google Scholar 

  • Wu Z, Li J, Jiang Z, He J (2011) Predictable climate dynamics of abnormal East Asian winter monsoon: once-in-a-century snowstorms in 2007/2008 winter. Clim Dyn 37:1661–1669

    Article  Google Scholar 

  • Wu Z, Dou J, Lin H (2015) Potential Influence of the November–December Southern Hemisphere annular mode on the East Asian winter precipitation: a new mechanism. Clim Dyn 44:1215–1226

    Article  Google Scholar 

  • Xie SP, Hu K, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J Clim 22:730–747

    Article  Google Scholar 

  • Yang S, Lau KM, Kim KM (2002) Variations of the East Asian jet stream and Asian–Pacific–American winter climate anomalies. J Clim 15:306–325

    Article  Google Scholar 

  • Yang J, Liu Q, Xie SP, Liu Z, Wu L (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett 34:L02708. doi:10.1029/2006GL028571

    Google Scholar 

  • Zhang R, Delworth TL (2005) Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J Clim 18:1853–1860

    Article  Google Scholar 

  • Zhang R, Sumi A, Kimoto M (1996) Impact of El Niño on the East Asian monsoon: a diagnostic study of the ‘86/87 and ‘91/92 events. J Meteorol Soc Jpn 74:49–62

    Article  Google Scholar 

  • Zhang W, Jin F-F, Li J, Ren H (2011) Contrasting impacts of twotype El Niño over the western North Pacific during boreal autumn. J Meteorol Soc Jpn 89:563–569

    Article  Google Scholar 

  • Zhang W, Li H, Jin F-F, Stuecker MF, Turner AG, Klingaman NP (2015) The annual-cycle modulation of meridional asymmetry in ENSO’s atmospheric response and its dependence on ENSO zonal structure. J Clim. doi:10.1175/JCLI-D-14-00724.1

    Google Scholar 

  • Zhang W, Li H, Stuecker MF, Jin F-F, Turner AG (2016) A new understanding of El Niño’s impact over East Asia: dominance of the ENSO combination mode. J Clim 29(12):4347–4359. doi:10.1175/JCLI-D-15-0104.1

    Article  Google Scholar 

  • Zhou Y, Wu Z (2016) Possible impacts of mega-El Niño/Southern oscillation and Atlantic multidecadal oscillation on Eurasian heat wave frequency variability. Q J R Meteorol Soc. doi:10.1002/qj.2759

    Google Scholar 

  • Zhou W, Wang X, Zhou J, Li C, Chan JCL (2007) Interdecadal variability of the relationship between the East Asian winter monsoon and ENSO. Meteorol Atmos Phys 98:283–293

    Article  Google Scholar 

  • Zhou Q, Chen W, Zhou W (2013) Solar cycle modulation of the ENSO impact on the winter climate of East Asia. J Geophys Res Atmos 118:5111–5119

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Special Fund for Public Welfare Industry (Meteorology) (GYHY201506013, GYHY201406022), and Qinglan Project and the Six Talent Peaks Project of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, X., Zhang, W., Stuecker, M.F. et al. Decadal modulation of the ENSO–East Asian winter monsoon relationship by the Atlantic Multidecadal Oscillation. Clim Dyn 49, 2531–2544 (2017). https://doi.org/10.1007/s00382-016-3465-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3465-0

Keywords

Navigation