Skip to main content
Log in

Oleic acid inhibits store-operated calcium entry in human colorectal adenocarcinoma cells

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Aims

Much evidence indicates the association between dietary fat and colorectal cancer risk. However, most of the studies focus on polyunsaturated fatty acids, and little is known about the role of monounsaturated ones and their precise mechanism of action. Being store-operated Ca2+ entry (SOCE) a Ca2+ influx pathway involved in the control of multiple cellular and physiological processes including cell proliferation, we studied the effect of oleic acid in Ca2+ signals of colorectal cancer cells, paying particular attention to SOCE.

Methods

Carbachol was used to induce SOCE in Fura 2-loaded HT29 cells. We tested a saturated fatty acid to compare the physiological relevance of our results.

Results

We show that oleic acid is a potent inhibitor of SOCE. By contrast, stearic acid failed to have a SOCE-inhibitory effect. The SOCE-inhibition induced by oleic acid was protein kinase C-independent and restored by albumin. We also demonstrated that oleic acid induced increases in [Ca2+]i. The novelty of our report is that little variability in the concentration could end in a large different physiological effect.

Conclusions

In conclusion, we suggest a physiological pathway for the beneficial effect of oleic acid in colon carcinoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Colditz GA, Samplin-Salgado M, Ryan CT, Dart H, Fisher L, Tokuda A, Rockhill B (2002) Harvard report on cancer prevention, volume 5: fulfilling the potential for cancer prevention: policy approaches. Cancer Causes Control 13(3):199–212

    Article  Google Scholar 

  2. World Cancer Research Fund/American Institute for Cancer Research (2007) Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington, DC

  3. Bartsch H, Nair J, Owen RW (1999) Dietary polyunsaturated fatty acids and cancers of the breast and colorectum: emerging evidence for their role as risk modifiers. Carcinogenesis 20(12):2209–2218

    Article  CAS  Google Scholar 

  4. Kolonel LN, Nomura AM, Cooney RV (1999) Dietary fat and prostate cancer: current status. J Natl Cancer Inst 91(5):414–428

    Article  CAS  Google Scholar 

  5. Caygill CP, Charlett A, Hill MJ (1996) Fat, fish, fish oil and cancer. Br J Cancer 74(1):159–164

    Article  CAS  Google Scholar 

  6. Giovannucci E, Willett WC (1994) Dietary factors and risk of colon cancer. Ann Med 26(6):443–452

    Article  CAS  Google Scholar 

  7. Hursting SD, Thornquist M, Henderson MM (1990) Types of dietary fat and the incidence of cancer at five sites. Prev Med 19(3):242–253

    Article  CAS  Google Scholar 

  8. Rao CV, Hirose Y, Indranie C, Reddy BS (2001) Modulation of experimental colon tumorigenesis by types and amounts of dietary fatty acids. Cancer Res 61(5):1927–1933

    CAS  Google Scholar 

  9. Chang WL, Chapkin RS, Lupton JR (1998) Fish oil blocks azoxymethane-induced rat colon tumorigenesis by increasing cell differentiation and apoptosis rather than decreasing cell proliferation. J Nutr 128(3):491–497

    CAS  Google Scholar 

  10. Minoura T, Takata T, Sakaguchi M, Takada H, Yamamura M, Hioki K, Yamamoto M (1988) Effect of dietary eicosapentaenoic acid on azoxymethane-induced colon carcinogenesis in rats. Cancer Res 48(17):4790–4794

    CAS  Google Scholar 

  11. Reddy BS, Sugie S (1988) Effect of different levels of omega-3 and omega-6 fatty acids on azoxymethane-induced colon carcinogenesis in F344 rats. Cancer Res 48(23):6642–6647

    CAS  Google Scholar 

  12. Colomer R, Menendez JA (2006) Mediterranean diet, olive oil and cancer. Clin Transl Oncol 8(1):15–21

    Article  CAS  Google Scholar 

  13. Trichopoulou A, Lagiou P, Kuper H, Trichopoulos D (2000) Cancer and mediterranean dietary traditions. Cancer Epidemiol Biomarkers Prev 9(9):869–873

    CAS  Google Scholar 

  14. Macquart-Moulin G, Riboli E, Cornee J, Charnay B, Berthezene P, Day N (1986) Case-control study on colorectal cancer and diet in Marseilles. Int J Cancer 38(2):183–191

    Article  CAS  Google Scholar 

  15. Stoneham M, Goldacre M, Seagroatt V, Gill L (2000) Olive oil, diet and colorectal cancer: an ecological study and a hypothesis. J Epidemiol Community Health 54(10):756–760

    Article  CAS  Google Scholar 

  16. Bartoli R, Fernandez-Banares F, Navarro E, Castella E, Mane J, Alvarez M, Pastor C, Cabre E, Gassull MA (2000) Effect of olive oil on early and late events of colon carcinogenesis in rats: modulation of arachidonic acid metabolism and local prostaglandin E2 synthesis. Gut 46(2):191–199

    Article  CAS  Google Scholar 

  17. Reddy BS, Maeura Y (1984) Tumor promotion by dietary fat in azoxymethane-induced colon carcinogenesis in female F344 rats: influence of amount and source of dietary fat. J Natl Cancer Inst 72(3):745–750

    CAS  Google Scholar 

  18. Menendez JA, Lupu R (2006) Mediterranean dietary traditions for the molecular treatment of human cancer: anti-oncogenic actions of the main olive oil’s monounsaturated fatty acid oleic acid (18:1n–9). Curr Pharm Biotechnol 7(6):495–502

    Article  CAS  Google Scholar 

  19. Llor X, Pons E, Roca A, Alvarez M, Mane J, Fernandez-Banares F, Gassull MA (2003) The effects of fish oil, olive oil, oleic acid and linoleic acid on colorectal neoplastic processes. Clin Nutr 22(1):71–79

    Article  CAS  Google Scholar 

  20. Escrich E, Moral R, Grau L, Costa I, Solanas M (2007) Molecular mechanisms of the effects of olive oil and other dietary lipids on cancer. Mol Nutr Food Res 51(10):1279–1292

    CAS  Google Scholar 

  21. Berridge MJ (1995) Calcium signalling and cell proliferation. Bioessays 17(6):491–500

    Article  CAS  Google Scholar 

  22. Kahl CR, Means AR (2003) Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev 24(6):719–736

    Article  CAS  Google Scholar 

  23. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7(1):1–12

    Article  CAS  Google Scholar 

  24. Alonso MT, Alvarez J, Montero M, Sanchez A, Garcia-Sancho J (1991) Agonist-induced Ca2+ influx into human platelets is secondary to the emptying of intracellular Ca2+ stores. Biochem J 280:783–789

    CAS  Google Scholar 

  25. Montero M, Alvarez J, Garcia-Sancho J (1991) Agonist-induced Ca2+ influx in human neutrophils is secondary to the emptying of intracellular calcium stores. Biochem J 277:73–79

    CAS  Google Scholar 

  26. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85(2):757–810

    Article  CAS  Google Scholar 

  27. Núñez L, Valero RA, Senovilla L, Sanz-Blasco S, García-Sancho J, Villalobos C (2006) Cell proliferation depends on mitochondrial Ca2+ uptake: inhibition by salicylate. J Physiol 571:57–73

    Article  Google Scholar 

  28. Weiss H, Amberger A, Widschwendter M, Margreiter R, Ofner D, Dietl P (2001) Inhibition of store-operated calcium entry contributes to the anti-proliferative effect of non-steroidal anti-inflammatory drugs in human colon cancer cells. Int J Cancer 92(6):877–882

    Article  CAS  Google Scholar 

  29. Zitt C, Strauss B, Schwarz EC, Spaeth N, Rast G, Hatzelmann A, Hoth M (2004) Potent inhibition of Ca2+ release-activated Ca2+ channels and T-lymphocyte activation by the pyrazole derivative BTP2. J Biol Chem 279(13):12427–12437

    Article  CAS  Google Scholar 

  30. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    CAS  Google Scholar 

  31. Kerst G, Fischer KG, Normann C, Kramer A, Leipziger J, Greger R (1995) Ca2+ influx induced by store release and cytosolic Ca2+ chelation in HT29 colonic carcinoma cells. Pflugers Arch 430(5):653–665

    Article  CAS  Google Scholar 

  32. Alonso MT, Sanchez A, Garcia-Sancho J (1989) Monitoring of the activation of receptor-operated calcium channels in human platelets. Biochem Biophys Res Commun 162(1):24–29

    Article  CAS  Google Scholar 

  33. Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc Natl Acad Sci USA 87(7):2466–2470

    Article  CAS  Google Scholar 

  34. Asaoka Y, Nakamura S, Yoshida K, Nishizuka Y (1992) Protein kinase C, calcium and phospholipid degradation. Trends Biochem Sci 17(10):414–417

    Article  CAS  Google Scholar 

  35. Chen SG, Murakami K (1992) Synergistic activation of type III protein kinase C by cis-fatty acid and diacylglycerol. Biochem J 282:33–39

    CAS  Google Scholar 

  36. Murakami K, Chan SY, Routtenberg A (1986) Protein kinase C activation by cis-fatty acid in the absence of Ca2+ and phospholipids. J Biol Chem 261(33):15424–15429

    CAS  Google Scholar 

  37. Alonso-Torre SR, Garcia-Sancho J (1997) Arachidonic acid inhibits capacitative calcium entry in rat thymocytes and human neutrophils. Biochim Biophys Acta 1328(2):207–213

    Article  CAS  Google Scholar 

  38. Tornquist K (1993) Modulatory effect of protein kinase C on thapsigargin-induced calcium entry in thyroid FRTL-5 cells. Biochem J 290:443–447

    CAS  Google Scholar 

  39. Meves H (2008) Arachidonic acid and ion channels: an update. Br J Pharmacol 155(1):4–16

    Article  CAS  Google Scholar 

  40. Chow SC, Jondal M (1990) Ca2+ entry in T cells is activated by emptying the inositol 1,4,5-triphosphate sensitive Ca2+ pool. Cell Calcium 11(10):641–646

    Article  CAS  Google Scholar 

  41. Golovina VA, Blaustein MP (1997) Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science 275(5306):1643–1648

    Article  CAS  Google Scholar 

  42. Gamberucci A, Fulceri R, Bygrave FL, Benedetti A (1997) Unsaturated fatty acids mobilize intracellular calcium independent of IP3 generation and VIA insertion at the plasma membrane. Biochem Biophys Res Commun 241(2):312–316

    Article  CAS  Google Scholar 

  43. Lewis RS (2001) Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol 19:497–521

    Article  CAS  Google Scholar 

  44. Smallridge RC, Kiang JG, Gist ID, Fein HG, Galloway RJ (1992) U-73122, an aminosteroid phospholipase C antagonist, noncompetitively inhibits thyrotropin-releasing hormone effects in GH3 rat pituitary cells. Endocrinology 131(4):1883–1888

    Article  CAS  Google Scholar 

  45. Yule DI, Williams JA (1992) U73122 inhibits Ca2+ oscillations in response to cholecystokinin and carbachol but not to JMV-180 in rat pancreatic acinar cells. J Biol Chem 267(20):13830–13835

    CAS  Google Scholar 

  46. Thompson AK, Mostafapour SP, Denlinger LC, Bleasdale JE, Fisher SK (1991) The aminosteroid U-73122 inhibits muscarinic receptor sequestration and phosphoinositide hydrolysis in SK-N-SH neuroblastoma cells. A role for Gp in receptor compartmentation. J Biol Chem 266(35):23856–23862

    CAS  Google Scholar 

  47. Ekokoski E, Forss L, Tornquist K (1994) Inhibitory action of fatty acids on calcium fluxes in thyroid FRTL-5 cells. Mol Cell Endocrinol 103(1–2):125–132

    Article  CAS  Google Scholar 

  48. Chow SC, Ansotegui IJ, Jondal M (1990) Inhibition of receptor-mediated calcium influx in T cells by unsaturated non-esterified fatty acids. Biochem J 267(3):727–732

    CAS  Google Scholar 

  49. Breittmayer JP, Pelassy C, Cousin JL, Bernard A, Aussel C (1993) The inhibition by fatty acids of receptor-mediated calcium movements in Jurkat T-cells is due to increased calcium extrusion. J Biol Chem 268(28):20812–20817

    CAS  Google Scholar 

  50. Khodorova AB, Astashkin EI (1994) A dual effect of arachidonic acid on Ca2+ transport systems in lymphocytes. FEBS Lett 353(2):167–170

    Article  CAS  Google Scholar 

  51. Randriamampita C, Trautmann A (1990) Arachidonic acid activates Ca2+ extrusion in macrophages. J Biol Chem 265(30):18059–18062

    CAS  Google Scholar 

  52. Bonin A, Khan NA (2000) Regulation of calcium signalling by docosahexaenoic acid in human T-cells. Implication of CRAC channels. J Lipid Res 41(2):277–284

    CAS  Google Scholar 

  53. Gamberucci A, Fulceri R, Benedetti A (1997) Inhibition of store-dependent capacitative Ca2+ influx by unsaturated fatty acids. Cell Calcium 21(5):375–385

    Article  CAS  Google Scholar 

  54. Aires V, Hichami A, Filomenko R, Ple A, Rebe C, Bettaieb A, Khan NA (2007) Docosahexaenoic acid induces increases in [Ca2+]i via inositol 1,4,5-triphosphate production and activates protein kinase C gamma and -delta via phosphatidylserine binding site: implication in apoptosis in U937 cells. Mol Pharmacol 72(6):1545–1556

    Article  CAS  Google Scholar 

  55. Carrillo C, Cavia MM, Alonso-Torre SR (2011) Oleic acid versus linoleic and α-linolenic acid. Different effects on Ca2+ signaling in rat thymocytes. Cell Physiol Biochem 27:373–380

    Article  CAS  Google Scholar 

  56. Carrillo C, Cavia MM, Roelofs HM, Wanten G, Alonso-Torre SR (2011) Activation of human neutrophils by oleic acid involves the production of reactive oxygen species and a rise in cytosolic calcium concentration: a comparison with n-6 polyunsaturated fatty acids. Cell Physiol Biochem 28:329–338

    Google Scholar 

  57. Mignen O, Thompson JL, Shuttleworth TJ (2001) Reciprocal regulation of capacitative and arachidonate-regulated noncapacitative Ca2+ entry pathways. J Biol Chem 276(38):35676–35683

    Article  CAS  Google Scholar 

  58. Tsubura A, Yuri T, Yoshizawa K, Uehara N, Takada H (2009) Role of fatty acids in malignancy and visual impairment: epidemiological evidence and experimental studies. Histol Histopathol 24(2):223–234

    CAS  Google Scholar 

Download references

Acknowledgments

This study was financed by the “Junta de Castilla y León” (project reference number BU001A09). C. Carrillo is supported by the Spanish Ministry of Education. We thank Gonzalo Moreno for his technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara R. Alonso-Torre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrillo, C., Cavia, M.M. & Alonso-Torre, S.R. Oleic acid inhibits store-operated calcium entry in human colorectal adenocarcinoma cells. Eur J Nutr 51, 677–684 (2012). https://doi.org/10.1007/s00394-011-0246-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-011-0246-8

Keywords

Navigation