Skip to main content

Advertisement

Log in

Near-infrared fluorescent probes for imaging vascular pathophysiology

  • REVIEW
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Light in the near-infrared (NIR) region between 700–900 nm can penetrate deep into living tissue, thereby offering a unique opportunity to use near-infrared fluorescence (NIRF) imaging techniques to detect and visualize fluorescent probes in-vivo. In the past few years, many novel NIR fluorescent probes have been designed, synthesized and studied in a variety of disease conditions. Recent research has focused primarily on the class of cyanines dyes as non-specific agents and as part of specific NIR fluorescent probes. The publications reviewed herein discuss the characteristics of cyanine dyes and their conjugates and present examples for the application of these probes for imaging vascular pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Achilefu S (2004) Lighting up tumors with receptor-specific optical molecular probes. Technol Cancer Res Treat 3(4):393–409

    PubMed  CAS  Google Scholar 

  2. Aikawa E, Nahrendorf M, Sosnovik D, Lok VM, Jaffer FA, Aikawa M, Weissleder R (2007) Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation 115:377–386

    Article  PubMed  CAS  Google Scholar 

  3. Bornhop DJ, Contag CH, Licha K, Murphy CJ (2001) Advance in contrast agents, reporters, and detection. J Biomed Opt 6:106–110

    Article  PubMed  CAS  Google Scholar 

  4. Bremer C, Ntziachristos V, Weissleder R (2003) Optical-based molecular imaging: contrast agents and potential medical applications. Eur Radiol 13:231–243

    PubMed  Google Scholar 

  5. Caesar J, Shaldon S, Chiandussi L, Guevara L, Sherlock S (1961) The use of indocyanine green in the measurement of hepatic blood flow and as a test of hepatic function. Clin Sci 21:43–57

    PubMed  CAS  Google Scholar 

  6. Chen J, Tung CH, Mahmood U, Ntziachristos V, Gyurko R, Fishman MC, Huang PL, Weissleder R (2002) In vivo imaging of proteolytic activity in atherosclerosis. Circulation 105:2766–2771

    Article  PubMed  Google Scholar 

  7. Chen J, Tung CH, Allport JR, Chen S, Weissleder R, Huang PL (2005) Near-infrared fluorescent imaging of matrix metalloproteinase activity after myocardial infarction. Circulation 111:1800–1805

    Article  PubMed  CAS  Google Scholar 

  8. Deguchi J, Aikawa M, Tung CH, Aikawa E, Kim DE, Ntziachristos V, Weissleder R, Libby P (2006) Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 114:55–62

    Article  PubMed  Google Scholar 

  9. Detter C, Russ D, Iffland A, Wipper S, Schurr MO, Reichenspurner H, Buess G, Reichart B (2002) Near-infrared fluorescence coronary angiography: a new non-invasive technology for intraoperative graft patency control. Heart Surg Forum 5(4):364–369

    PubMed  Google Scholar 

  10. Falati S, Gross P, Merrill-Skoloff G, Furie BC, Furie B (2002) Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat Med 8(10):1175–1180

    Article  PubMed  CAS  Google Scholar 

  11. Flaumenhaft R, Tanaka E, Graham GJ, De Grand AM, Laurence RG, Hoshino K, Hajjar RJ, Frangioni JV (2007) Localisation and quantification of platelet-rich thrombi in large blood vessels with near-infrared fluorescence imaging. Circulation 115:84–93

    Article  PubMed  Google Scholar 

  12. Flower RW, Hochheimer BF (1976) Indocyanine green dye fluorescence and infrared absorption choroidal angiography performed simultaneously with fluorescein angiography. Johns Hopkins Med J 138:33–42

    PubMed  CAS  Google Scholar 

  13. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–634

    Article  PubMed  CAS  Google Scholar 

  14. Gruber HJ, Hahn CD, Kada G, Riener CK, Harms GS, Ahrer W, Dax TG, Knaus HG (2000) Anomalous fluorescence enhancement of Cy3 and Cy3.5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalent linking to IgG and noncovalent binding to avidin. Bioconjug Chem 11:696–704

    Article  PubMed  CAS  Google Scholar 

  15. Herbort CP, LeHoang P, Guex-Crosier Y (1998) Schematic interpretation of indocyanine green angiography in posterior uveitis using a standard angiographic protocol. Ophthalmology 105:432–440

    Article  PubMed  CAS  Google Scholar 

  16. Jaffer FA, Tung CH, Gerszten RE, Weissleder R (2002) In vivo imaging of thrombin activity in experimental thrombi with thrombin-sensitive near-infrared molecular probe. Arterioscler Thromb Vasc Biol 22:1929–1935

    Article  PubMed  CAS  Google Scholar 

  17. Jaffer FA, Tung CH, Wykrzykowska JJ, Ho NH, Houng AK, Reed GL, Weissleder R (2004) Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi. Circulation 110:170–176

    Article  PubMed  CAS  Google Scholar 

  18. Jaffer FA, Kim DE, Quinti L, Tung CH, Aikawa E, Pande AN, Kohler RH, Shi GP, Libby P, Weissleder R (2007) Optical visualisation of cathepsin k activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation 115:2292–2298

    Article  PubMed  Google Scholar 

  19. Kelly KA, Allport JR, Tsourkas A, Shinde-Patil VR, Josephson L, Weissleder R (2005) Detection of vascular adhesion moleculae-1 expression using a novel multimodal nanoparticle. Circ Res 96(3):327–336

    Article  PubMed  CAS  Google Scholar 

  20. Kim DE, Jaffer FA, Weissleder R, Tung CH, Schellingerhout D (2005) Near-infrared fluorescencet imaging of cerebral thrombi and blood-brain barrier disruption in a mouse model of cerebral venous sinus thrombosis. J Cereb Blood Flow Metab 25:226–233

    Article  PubMed  Google Scholar 

  21. Licha K (2002) Contrast agents for optical imaging. In: Krause W (ed) Topics in current chemistry Vol. 222—Contrast Agents II. Springer, Heidelberg, pp 1–29

    Google Scholar 

  22. Licha K, Olbrich C (2005) Optical imaging in drug discovery and diagnostic applications. Adv Drug Deliv Rev 57:1087–1108

    Article  PubMed  CAS  Google Scholar 

  23. Liebert A, Wabnitz H, Obrig H, Erdmann R, Moeller M, Macdonald R, Rinneberg H, Villringer A, Steinbrink J (2006) Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain. Neuroimage 31:600–608

    Article  PubMed  CAS  Google Scholar 

  24. Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV (2003) Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging 2(1):50–64

    Article  PubMed  CAS  Google Scholar 

  25. McIntyre JO, Fingleton B, Wells KS, Piston DW, Lynch CC, Gautam S, Matrisian LM (2004) Development of a novel fluorogenic proteolytic beacon for in vivo detection and imaging of tumour-associated matrix metalloproteinase-7 activity. Biochem J 377:617–628

    Article  PubMed  CAS  Google Scholar 

  26. Mullin JM, Agostino N, Rendon-Huerta E, Thornton JJ (2005) Epithelial and endothelial barriers in human diseases. Drug Discov Today 10:395–408

    Article  PubMed  CAS  Google Scholar 

  27. Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P, Weissleder R (2006) Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 114:1504–1511

    Article  PubMed  CAS  Google Scholar 

  28. Nahrendorf M, Sosnovik DE, Waterman P, Swirski FK, Pande AN, Aikawa E, Figueiredo JL, Pittet MP, Weissleder R (2007) Dual channel optical tomographic imaging of leukocyte recruitment and protease activity in the healing myocardial infarct. Circ Res 100:1218–1225

    Article  PubMed  CAS  Google Scholar 

  29. Nakayama A, Monte F, Hajjar RJ, Frangioni JV (2002) Functional near-infrared fluroescence imaging for cardiac surgery and targeted gene therapy. Mol Imaging 1(4):365–377

    Article  PubMed  Google Scholar 

  30. Ntziachristos V (2006) Fluorescence Molecular Imaging. Annu Rev Biomed Eng 8:1–33

    Article  PubMed  CAS  Google Scholar 

  31. Raabe A, Beck J, Gerlach R, Zimmermann M, Seifert V (2003) Near-infrared indocyanine green video angiography: a new method for intraoperative assessment of vascular flow. Neurosurgery 52:132–139

    Article  PubMed  Google Scholar 

  32. Schad H, Brechtelsbauer H, Kramer K (1977) Studies on the suitability of a cyanine dye (Viher-Test) for indicator dilution technique and its application to the measurement of pulmonary artery and aortic flow. Pflugers Arch 370:139–144

    Article  PubMed  CAS  Google Scholar 

  33. Sekijima M, Tojimbara T, Sato S, Nakamura M, Kawase T, Kai K, Urashima Y, Nakajima I, Fuchinoue S, Teraoka S (2004) An intraoperative fluorescent imaging system in organ transplantation. Transplant Proc 36:2188–2190

    Article  PubMed  CAS  Google Scholar 

  34. Steinbrink J, Villringer A, Liebert A, Wabnitz H, Macdonald R, Obrig H, Wunder A, Bourayou R, Betz T, Klohs J, Lindauer U, Dirnagl U (2007) Towards non-invasive molecular fluorescence imaging of the human brain. J Neurodegen Dis (in press)

  35. Taggart DP, Choudhary B, Anastasiadis K, Abu-Omar Y, Balacumaraswami L, Pigott DW (2003) Preliminary experience with a novel intraoperative fluorescence imaging technique to evaluate the patency of bypass grafts in total arterial revascularisation. Ann Thorac Surg 75(3):870–873

    Article  PubMed  Google Scholar 

  36. Tung CH, Bredow S, Mahmood U, Weissleder R (1999) Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging. Bioconjug Chem 10:892–896

    Article  PubMed  CAS  Google Scholar 

  37. Tung CH, Gerszten RE, Jaffer FA, Weissleder (2002) A novel near-infrared fluorescence sensor for detection of thrombin activation in the blood. Chembiochem 3:207–211

    Article  PubMed  CAS  Google Scholar 

  38. Tung CH, Ho NH, Zeng Q, Tang Y, Jaffer FA, Reed GL, Weissleder R (2003) Novel factor XIII probes for blood coagulation imaging. Chembiochem 4:897–899

    Article  PubMed  CAS  Google Scholar 

  39. Tung CH (2004) Fluorescent peptide probes for in vivo diagnostic imaging. Biopolymers 76:391–403

    Article  PubMed  CAS  Google Scholar 

  40. Tung CH, Quinti L, Jaffer FA, Weissleder R (2004) A branched fluorescent peptide probe for imaging of activated platelets. Mol Pharm 2(1):92–95

    Article  Google Scholar 

  41. Weissleder R, Tung CH, Mahmood U, Bogdanov A (1999) In vivo imaging of turmors with protease-activated near-infarred fluorescent probes. Nat Biotechnol 17:375–378

    Article  PubMed  CAS  Google Scholar 

  42. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9(1):123–128

    Article  PubMed  CAS  Google Scholar 

  43. Zaheer A, Murshed M, De Grand AM, Morgan TG, Karsenty G, Frangioni JV (2006) Optical imaging of hydroxylapatite in the calcified vasculature of transgenic animal. Atherioscler Thromb Vasc Biol 26:1132–1136

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ulrich Dirnagl (Dept. of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - University Medicine Berlin, Germany) for the helpful suggestions during the preparation of this article.

Conflict of Interest none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Klohs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klohs, J., Wunder, A. & Licha, K. Near-infrared fluorescent probes for imaging vascular pathophysiology. Basic Res Cardiol 103, 144–151 (2008). https://doi.org/10.1007/s00395-008-0702-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-008-0702-7

Key words

Navigation