Skip to main content
Log in

Sedimentation and drying dissipative structures of colloidal silica (1.2 μm in diameter) suspensions in a glass dish and a polystyrene dish

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Sedimentation and drying dissipative structural patterns formed in the course of drying colloidal silica spheres (1.2 μm in diameter) in aqueous suspension have been studied in a glass dish and a polystyrene dish. The broad ring patterns are formed within a short time in suspension state by the convection flow of water and colloidal spheres. The broad ring patterns are not formed when a dish is covered with a cap, which demonstrates the important role of the convectional flow of silica spheres and water accompanied with the evaporation of water on the air-suspension interface. The sedimentary spheres always move by the convectional flow of water, and the broad ring patterns became sharp with time. Broad ring and microscopic fine structures are formed in the solidification processes on the bases of the convectional and sedimentation patterns. Drying patterns of the colloidal suspensions containing sodium chloride are star-like ones, which strongly supports the synchronous cooperative interactions between the salt and colloidal spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vanderhoff JW (1973) J Polym Sci Polym Symp 41:155

    Article  Google Scholar 

  2. Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems. Wiley, NY

    Google Scholar 

  3. Cross MC, Hohenberg PC (1993) Rev Mod Phys 65:851

    Article  CAS  Google Scholar 

  4. Ohara PC, Heath JR, Gelbart WM (1997) Angew Chem Int Ed Engl 36:1078

    Article  CAS  Google Scholar 

  5. Ohara PC, Heath JR, Gelbart WM (1998) Langmuir 14:3418

    Article  CAS  Google Scholar 

  6. Uno K, Hayashi K, Hayashi T, Ito K, Kitano H (1998) Colloid Polym Sci 276:810

    Article  CAS  Google Scholar 

  7. Gelbart WM, Sear RP, Heath JR, Chang S (1999) Faraday Discuss 112:299

    Article  CAS  Google Scholar 

  8. van Duffel B, Schoonheydt RA, Grim CPM, De Schryver FC (1999) Langmuir 15:7520

    Article  CAS  Google Scholar 

  9. Maenosono S, Dushkin CD, Saita S, Yamaguchi Y (1999) Langmuir 15:957

    Article  CAS  Google Scholar 

  10. Brock SL, Sanabria M, Suib SL, Urban V, Thiyagarajan P, Potter DI (1999) J Phys Chem 103:7416

    CAS  Google Scholar 

  11. Nikoobakht B, Wang ZL, El-Sayed MA (2000) J Phys Chem 104:8635

    CAS  Google Scholar 

  12. Ge G, Brus L (2000) J Phys Chem 104:9573

    CAS  Google Scholar 

  13. Chen KM, Jiang X, Kimerling LC, Hammond PT (2000) Langmuir 16:7825

    Article  CAS  Google Scholar 

  14. Lin XM, Jaenger HM, Sorensen CM, Klabunde KJ (2001) J Phys Chem 105:3353

    CAS  Google Scholar 

  15. Kokkoli E, Zukoski CF (2001) Langmuir 17:369

    Article  CAS  Google Scholar 

  16. Ung T, Liz-Marzan LM, Mulvaney P (2001) J Phys Chem B 105:3441

    Article  CAS  Google Scholar 

  17. Shimomura M, Sawadaishi T (2001) Curr Opin Colloid Interface Sci 6:11

    Article  CAS  Google Scholar 

  18. Okubo T, Okuda S, Kimura H (2002) Colloid Polym Sci 280:454

    Article  CAS  Google Scholar 

  19. Okubo T, Kimura K, Kimura H (2002) Colloid Polym Sci 280:1001

    Article  CAS  Google Scholar 

  20. Okubo T, Kimura H, Kimura T, Hayakawa F, Shibata T, Kimura K (2005) Colloid Polym Sci 283:1

    Article  CAS  Google Scholar 

  21. Okubo T, Yamada T, Kimura K, Tsuchida A (2005) Colloid Polym Sci 283:1007

    Article  CAS  Google Scholar 

  22. Yamaguchi T, Kimura K, Tsuchida A, Okubo T, Matsumoto M (2005) Colloid Polym Sci 283:1123

    Article  CAS  Google Scholar 

  23. Okubo T, Kanayama S, Kimura K (2004) Colloid Polym Sci 282:486

    Article  CAS  Google Scholar 

  24. Kimura K, Kanayama S, Tsuchida A, Okubo T (2005) Colloid Polym Sci 283:898

    Article  CAS  Google Scholar 

  25. Okubo T, Shinoda C, Kimura K, Tsuchida A (2005) Langmuir 21:9889

    Article  PubMed  CAS  Google Scholar 

  26. Okubo T, Kanayama S, Ogawa H, Hibino M, Kimura K (2004) Colloid Polym Sci 282:230

    Article  CAS  Google Scholar 

  27. Okubo T, Yamada T, Kimura K, Tsuchida A (2006) Colloid Polym Sci 284:372

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Ministry of Education, Science, Sports and Culture, Japan is gratefully acknowledged for Grants-in-Aid for Scientific Research on Germ Area (17655046), “Direct observation of sedimentation dissipative structure of polymer colloidal suspensions”. The silica sphere sample, CS1000A was a gift from Catalyst & Chemical Ind. (Tokyo), to whom the author appreciates very much. Professor Akira Tsuchida of Gifu University is thanked for his help of the author’s experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneo Okubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okubo, T. Sedimentation and drying dissipative structures of colloidal silica (1.2 μm in diameter) suspensions in a glass dish and a polystyrene dish. Colloid Polym Sci 284, 1395–1401 (2006). https://doi.org/10.1007/s00396-006-1509-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-006-1509-4

Keywords

Navigation