Skip to main content
Log in

Water-dispersible carbon nanotubes from a mixture of an ethoxy-modified trisiloxane and pluronic block copolymer F127

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The ability of a mixture of an ethoxy-modified trisiloxane (a silicone surfactant, named Ag-64) and a block copolymer F127 to disperse carbon nanotubes (CNTs) was investigated by experimental investigation and molecular dynamics simulation. Dispersions with large amounts of individual CNTs were obtained. The quantity of dispersed CNTs was obviously larger than each quantity of the dispersions with individual surfactants at the same concentration, even exceeded the sum of them. The mechanism of dispersing CNTs was also discussed. It can be inferred that Ag-64 and few F127 could wrap onto the surface of CNTs to dispart clusters to individuals, and the other F127 interact with adsorbed Ag-64 and F127 to generate stronger steric stabilization. Thus, a synergistic effect on dispersing CNTs by the mixture of Ag-64 and F127 was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128–130:37–46

    Article  Google Scholar 

  2. Tselev A, Woodson M, Qian C, Liu J (2007) Microwave impedance spectroscopy of dense carbon nanotube bundles. Nano Lett 8:152–156

    Article  Google Scholar 

  3. Jiao LY, Xian XJ, Wu ZY, Zhang J, Liu ZF (2009) Selective positioning and integration of individual single-walled carbon nanotubes. Nano Lett 9:205–209

    Article  CAS  Google Scholar 

  4. Park S, Cho M, Lim S, Choi H, Jhon M (2003) Synthesis and dispersion characteristics of multi-walled carbon nanotube composites with poly(methyl methacrylate) prepared by in-situ bulk polymerization. Macromol Rapid Commun 24:1070–1073

    Article  CAS  Google Scholar 

  5. Sung JH, Kim HS, Jin HJ, Choi HJ, Chin IJ (2004) Nanofibrous membranes prepared by multiwalled carbon nanotube/poly(methyl methacrylate) composites. Macromolecules 37:9899–9902

    Article  CAS  Google Scholar 

  6. Noguchi Y, Fujigaya T, Niidome Y, Nakashima N (2008) Regulation of the near-IR spectral properties of individually dissolved single-walled carbon nanotubes in aqueous solutions of dsDNA. Chem Eur J 14:5966–5973

    Article  CAS  Google Scholar 

  7. Bonard JM, Stora T, Salvetat JP, Maier F, Stockli T, Duschl C, Forro L, Heer WAD, Chbtelain A (1997) Purification and size-selection of carbon nanotubes. Adv Mater 9:827–831

    Article  CAS  Google Scholar 

  8. Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J, Talmon Y (2003) Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett 3:1379–1382

    Article  CAS  Google Scholar 

  9. O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596

    Article  Google Scholar 

  10. Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P (2000) Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290:1331–1334

    Article  CAS  Google Scholar 

  11. Haggenmueller R, Rahatekar SS, Fagan JA, Chun J, Becker ML, Naik RR, Krauss T, Carlson L, Kadla JF, Trulove PC, Fox DF, DeLong HC, Fang Z, Kelley SO, Gilman JW (2008) Comparison of the quality of aqueous dispersions of single wall carbon nanotubes using surfactants and biomolecules. Langmuir 24:5070–5078

    Article  CAS  Google Scholar 

  12. Jin HJ, Choi HJ, Yoon SH, Myung SJ, Shim SE (2005) Carbon nanotube-adsorbed polystyrene and poly(methyl methacrylate) microspheres. Chem Mater 17:4034–4037

    Article  CAS  Google Scholar 

  13. Nap R, Szleifer I (2005) Control of carbon nanotube-surface interactions: the role of grafted polymers. Langmuir 21:12072–12075

    Article  CAS  Google Scholar 

  14. Shvartzman-Cohen R, Levi-Kalisman Y, Nativ-Roth E, Yerushalmi-Rozen R (2004) Generic approach for dispersing single-walled carbon nanotubes: the strength of a weak interaction. Langmuir 20:6085–6088

    Article  CAS  Google Scholar 

  15. Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338–342

    Article  CAS  Google Scholar 

  16. Sun WM, Bu YX, Wang YX (2008) Interaction between glycine/glycine radicals and intrinsic/boron-doped (8, 0) single-walled carbon nanotubes: a density functional theory study. J Phys Chem B 112:15442–15449

    Article  CAS  Google Scholar 

  17. Inoue S, Matsumura Y (2008) Molecular dynamics simulation of physical vapor deposition of metals onto a vertically aligned single-walled carbon nanotube surface. Carbon 46:2046–2052

    Article  CAS  Google Scholar 

  18. Han Y, Elliott J (2007) Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput Mater Sci 39:315–323

    Article  CAS  Google Scholar 

  19. Liu W, Yang CL, Zhu YT, Wang MS (2008) Interactions between single-walled carbon nanotubes and polyethylene/polypropylene/polystyrene/poly(phenylacetylene)/poly(p-phenylenevinylene) considering repeat unit arrangements and conformations: a molecular dynamics simulation study. J Phys Chem C 112:1803–1811

    Article  CAS  Google Scholar 

  20. Yang M, Koutsos V, Zaiser M (2005) Interactions between polymers and carbon nanotubes: a molecular dynamics study. J Phys Chem B 109:10009–10014

    Article  CAS  Google Scholar 

  21. Zheng Q, Xue Q, Yan K, Hao L, Li Q, Gao X (2007) Investigation of molecular interactions between SWNT and polyethylene/polypropylene/polystyrene/polyaniline molecules. J Phys Chem C 111:4628–4635

    Article  CAS  Google Scholar 

  22. Gao HJ, Kong Y, Cui DX, Ozkan CS (2003) Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett 3:471–473

    Article  CAS  Google Scholar 

  23. Kang Y, Wang Q, Liu YC, Wu T, Chen Q, Guan WJ (2008) Dynamic mechanism of collagen-like peptide encapsulated into carbon nanotubes. J Phys Chem B 112:4801–4807

    Article  CAS  Google Scholar 

  24. Zhao X, Johnson JK (2007) Simulation of adsorption of DNA on carbon nanotubes. J Am Chem Soc 129:10438–10445

    Article  CAS  Google Scholar 

  25. Xin X, Xu GY, Zhao TT, Zhu YY, Shi XF, Gong HJ, Zhang ZQ (2008) Dispersing carbon nanotubes in aqueous solutions by a starlike block copolymer. J Phys Chem C 112:16377–16384

    Article  CAS  Google Scholar 

  26. Pang JY, Xu GY, Yuan SL, Tan YB, He F (2009) Dispersing carbon nanotubes in aqueous solutions by a silicon surfactant: Experimental and molecular dynamics simulation study. Colloids Surf A 350:101–108

    Article  CAS  Google Scholar 

  27. Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364

    Article  CAS  Google Scholar 

  28. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Article  Google Scholar 

  29. Yuan SL, Ma LX, Zhang XQ, Zheng LQ (2006) Molecular dynamics studies on monolayer of cetyltrimethylammonium bromide surfactant formed at the air/water interface. Colloids Surf A 289:1–9

    Article  CAS  Google Scholar 

  30. Saito R, Dresselhaus G, Dresselhaus MS (2000) Trigonal warping effect of carbon nanotubes. Phys Rev B 61:2981–2985

    Article  CAS  Google Scholar 

  31. Charati SG, Stern SA (1998) Diffusion of gases in silicone polymers: molecular dynamics simulations. Macromolecules 31:5529–5535

    Article  CAS  Google Scholar 

  32. Gou JH, Minaie B, Wang B, Liang ZY, Zhang C (2004) Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites. Comput Mater Sci 31:225–236

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant Nos. 20873077) and the Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiying Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, J., Xu, G., Tan, Y. et al. Water-dispersible carbon nanotubes from a mixture of an ethoxy-modified trisiloxane and pluronic block copolymer F127. Colloid Polym Sci 288, 1665–1675 (2010). https://doi.org/10.1007/s00396-010-2306-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2306-7

Keywords

Navigation